KINE 601

Data Types - Relationships Among Data

Reading: Huck pp 17-74

Types of Data

- Continuous - infinite subdivisions possible
- Interval - no absolute zero (absence of characteristic) possible
- Examples: IQ scores, hematocrit, VO2max, time to complete a task
- Distance between 1 and 2 is the same as between 3 and 4
- Ratio - interval data that may have an absolute zero
- allows for more precision - ratios are technically possible
- Examples: age, academic test scores, PSA
- Ratio statements like 18 lbs . Is 3 times heavier than 6 lbs.
- Discrete - no subdivisions possible - finite number of values
- Examples: number of siblings, number of bullets in a gun
- Dichotomous - two mutually exclusive polar extremes
- Examples: yes-no or true-false responses on a questionnaire
- Categorical (Nominal) - arbitrary or systematic classifications
- Examples: religious preference, age brackets, Likert scores (scaling)
- Ordinal - rankings
- Examples: rankings of football players according to their 40 yd dash time: 1st, 2nd, 3rd, etc.
- Statistics: a tool of research
- Webster's Definition:

What are Statistics?

- 1. a branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data (this definition associated with inferential statistics)
- 2. a collection of such numerical data (associated with descriptive statistics)
- Descriptive Statistic:
- an index number used to describe or summarize sample data or a particular place in that data
- mean, median, mode, percentile rank
- Inferential Statistic:
- a value resulting from a method of analysis of sample data that takes "chance" into account when samples are used to derive conclusions (inferences) about populations
- allows for making decisions (inferences) from incomplete data (samples) hence the term "inference space"

Important Statistical Terms \& Concepts

- Population: all members of a specified group
- Sample: a defined subset of the population
- Parameter: a numerical characteristic of a population
- Parametric statistics: used when parameter from sample data comes from a population in which the 1. parameter is normally distributed and 2. sample group variance is homogeneous (obviously, the data must be CONTINUOUS).
- Statistic: a numerical characteristic of a sample

Statistical Terms \& Concepts

- univarite: pertaining to only one dependent variable
- bivariate: pertaining to two dependent variables
- multivariate: pertaining to two or more dependent variables
- distribution: a group of dependent variable scores
- frequency distribution: distribution of dependent variable scores grouped into various types of frequency categories
- cumulative frequency distribution - each value represents an accumulated or summed frequency
- normal distribution: a distribution of scores (or frequency distribution) in which most of the scores are clustered around the mean with a gradual symmetric decrease in frequency of scores in both directions away from the mean

Example of a Near Normal Distribution

Frequency distribution of diastolic blood pressure reading for 1000 people

Descriptive Statistics

- Measures of Central Tendency

- Mean - average (denoted by \mathbf{X} or \mathbf{y} for a sample, \mathbf{m} for population)
- Median - middle score - score that divides distribution into equal halves
- Mode - score that occurs most often
- In a 100% normal distribution: mean, median, \& mode are the same
- Having a few scores "strung out" on one side of the distribution or many of the scores on particular side of the mean may significantly "skew" a distribution, making it non-normal.

V02max Dist. of Bussiness Grad Students

Distribution Examples

Normal Distribution Example

Negatively Skewed Distribution Example

Descriptive Statistics

- Measures of Variability (Spread of Scores - Score Dispersion)
- Consider a group of " n " scores ($\mathrm{n}=$ number of scores): 01234
- Range: difference between lowest \& highest score ($4-0=4$)
- interquartile range: 75th \%tile - 25th \%tile (3-1 = 2)
- Variation: the sum of the squared deviations of scores from the mean $\boldsymbol{\Sigma}(\mathrm{X}-\mathbf{X})^{2} \quad$ called "Sum of Squares" "SS"

$$
\begin{array}{lll}
\mathrm{X}=2 & 0-2=-2 & (-2)^{2}=4 \\
1-2=-1 & (-1)^{2}=1 \\
2-2=0 & (0)^{2}=0 \\
3-2=1 & (1)^{2}=1 \\
4-2=2 & (2)^{2}=4
\end{array}
$$

Descriptive Statistics

- Measures of Variability for distribution: 01234
- Variance: the "average variation"
- denoted by \boldsymbol{s}^{2} for a sample, $\boldsymbol{\sigma}^{2}$ for a population

$$
\frac{S S}{n-1}=\frac{10}{5-1}=2.5
$$

note that division would be by n for a "population". In sample statistics, you loose one "degree of freedom".

- Standard Deviation: the positive square root of the variance
- denoted by \mathbf{S} for a sample, $\boldsymbol{\sigma}$ for a population

$$
\sqrt{\frac{S S}{n-1}}=\sqrt{\frac{10}{5-1}}=1.6
$$

- Coefficient of variation: standard deviation divided by the mean
- used to compare the variability of two distributions with different units

$$
\frac{S}{X}=\frac{1.6}{2}=.8
$$

the Normal Distribution

Relationships Among Data

- Pearson correlation coefficient: " r "
- requires data to be continuous and come from a normal distribution
- a "-1 to 1" representation of the degree of relationship.
- consider 2 sets of scores: $x=01234$ and $y=237109$
- suppose the first set of scores represent a score on Test A and the 2nd set of numbers represent scores on Test B. Is there a relationship between the scores on Test A and the scores on Test B? One way this can be determined is by examining a scatter plot

Relationships Among Data

- the numerical representation of the relationship is found by calculating the Pearson correlation coefficient (\mathbf{r}):
co-variation of x and y
(how variation "corresponds")
(total variation in both variables)
$r=$ $\sqrt{(\text { variation of } x) \text { (variation of } y \text {) }}$

$$
\Sigma(X-X)(y-y)
$$

r =

$$
=.93
$$

$$
\sqrt{\Sigma(X-X)^{2} \Sigma(y-\mathbf{y})^{2}}
$$

- this correlation coefficient can be positive or negative
- negative indicates inverse relationship
- strength of the relationship depends on the value of \mathbf{r}
- 0-. 2 slight .2-. 4 weak .4-. 6 moderate $.6-.8$ substantial $>.8$ high

Relationships Among Data

- the correlation matrix
- used to display bivariate relationships among numerous variables

	WEIGHT	SBP	TCHOL
WEIGHT	$\begin{gathered} 1.00000 \\ .000 \end{gathered}$	$\begin{aligned} & \rightarrow 0.85934 \\ & \mathrm{e} \longrightarrow .014 \end{aligned}$	$\begin{gathered} -0.94059 \\ .002 \end{gathered}$
SBP	$\begin{gathered} 0.85934 \\ .014 \end{gathered}$	$\begin{gathered} 1.00000 \\ .000 \end{gathered}$	$\begin{gathered} -0.85822 \\ .027 \end{gathered}$
TCHOL	$\begin{gathered} -0.94059 \\ .002 \end{gathered}$	$\begin{gathered} -0.85822 \\ .027 \end{gathered}$	$\begin{gathered} 1.00000 \\ .000 \end{gathered}$

- correlation does not imply cause - effect
- consider x and y to be related:

$$
x \rightarrow y \quad y \longrightarrow x \quad z \quad x \rightarrow y
$$

- coefficient of determination: $\mathbf{r}^{2}\left(\mathbf{R}^{2}\right)$
- the amount of variability in one variable "explained" by the other
- represents strength of association (other similar measure: ω^{2})

Relationships Among Data

@ the danger of "outliers"
[outliers: distribution values located far away from the bulk of values

- may cause \mathbf{r} values to be exaggerated or underestimated
@ can be checked by scatter plot
@ Pearson \mathbf{r} will underestimate curvilinear relationships

perfect curvilinear relationship underestimated by Pearson r

Non-Parametric Correlation Statistics

(does not require continuous or normally distributed data)

- Spearman's rho or rank order (r_{s} or r) - used for ordinal data
- used when both sets of data are ranked (listed as ranks: $1^{\text {st }}, 2^{\text {nd }} \ldots .$. etc.)
- Kendall's tau (t)
- same as Spearman's, but does a better job with tied ranks
- Point biserial ($r_{p b}$)
- used when one variable is truly dichotomous - other continuous
- Biserial ($r_{\text {bis }}$)
- used when one variable is artificially dichotomous - other continuous
- Phi correlation (ϕ)
- used when both variables represent true dichotomies
- Tetrachoric correlation
- used when variables represent artificial dichotomies
- Cramer's V
- used when both variables are nominal (categorical) data

