

Energy Metabolism Estimation

Resting Metabolic Rate (RMR) = 1 MET = 3.5 ml O_2 / kg body wt / min 1 Liter O₂ = 5 Kcal 1 lb adipose tissue (fat) = 3500 Kcal1 kg = 2.2 lbs.1 mph = 26.8 meters / min1 kgm = 9.807 joules1 watt = 6.1 kgm/minSpeed in min. / mile = 60 / speed in MPH

Example:

- 1. Estimate the daily energy requirements of a 176 lbs. Man (RMR)
- 2. How much weight would the man lose in one week if he reduced his caloric intake by 250 kcal / day and burned an extra 250 kcal / day by running on a treadmill (assume all metabolic hormone influences are negligible and that he does indeed have fat to lose)?

Estimation Equations For Exercise Metabolism

Walking - speeds 50 to 100 m/min : 1.9 to 3.7 mph

Horizontal Component: VO₂ ml/kg/min = SPEED m/min x .1 ml/kg/min/m/min

Vertical Component: VO₂ ml/kg/min = SPEED m/min x %GRADE x 1.8 ml/kg/min/m/min

Resting Component: VO₂ ml/kg/min = 3.5 ml/kg/min

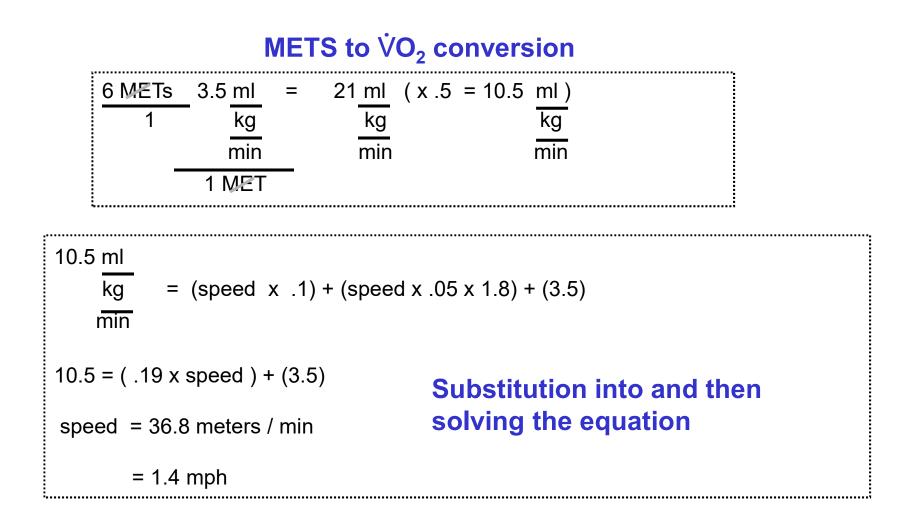
Total VO₂ (ml/kg/min) = sum of the resting, horizontal and vertical components **Relative VO₂ = (SPEED x .1) + (SPEED x GRADE x 1.8) + 3.5**

Running - speeds > 134 m/min : > 5 mph or between 3 and 5 mph if truly running

Horizontal Component: VO₂ ml/kg/min = SPEED m/min x .2 ml/kg/min/m/min

Vertical Component: VO₂ ml/kg/min = SPEED m/min x %GRADE x .9 ml/kg/min/m/min

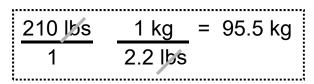
Resting Component: VO₂ ml/kg/min = 3.5 ml/kg/min


Total VO_2 (ml/kg/min) = sum of the resting, horizontal and vertical components

Relative VO_2 = (SPEED x .2) + (SPEED x GRADE x .9) + 3.5

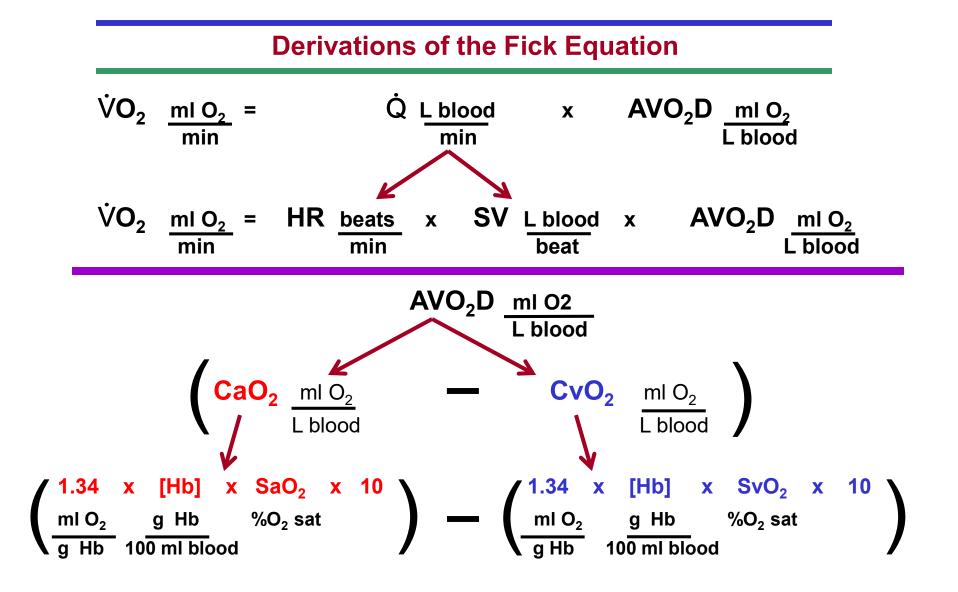
Cycle Ergometry(unloaded cycling)(resting component)VO2 ml/kg/min= (1.8 ml/kgm x WORK RATE kgm/min)+ (3.5 ml/kg/min)+ (3.5 ml/kg/min)BODY WEIGHT (kg)BODY WEIGHT (kg)+ (3.5 ml/kg/min)+ (3.5 ml/kg/min)WORK RATE = Resistance (kg) x Pedal Revolution Circumference (m/rev) x RPM (rev/min)Pedal Revolution Circumference:Monarch - 6 m/revPedal Revolution Circumference:Monarch - 6 m/revTunturi - 3 m/revRelative VO2 = { [1.8 x (R x PRC x RPM)] / BW } + 7

Metabolic Calculation Example

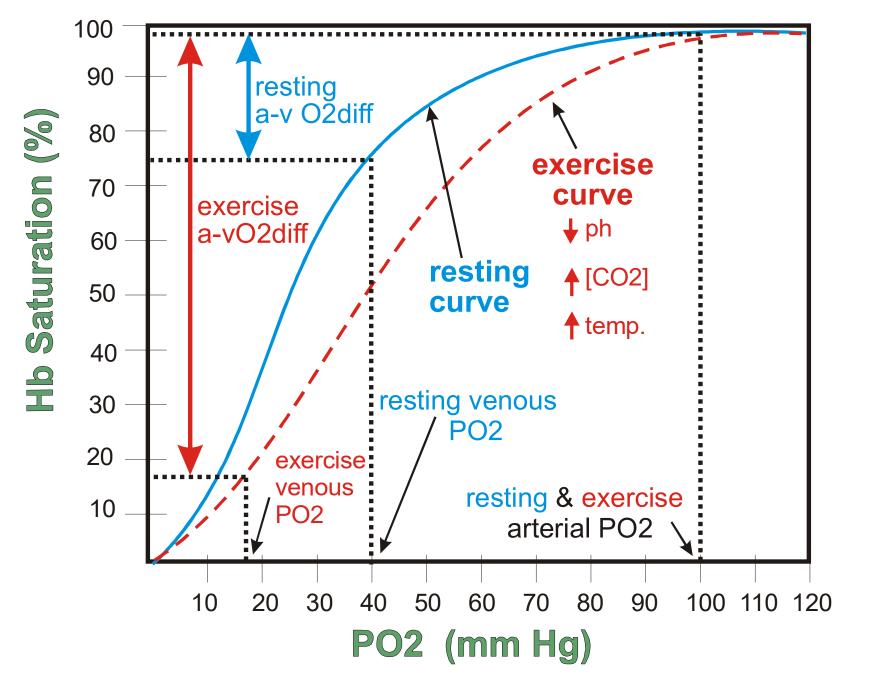

You have been assigned to supervise exercise for a new post-CABG cardiac patient who weighs 210 lbs. And has a peak $\dot{V}O_2$ of 6 METS. At what speed would you set the treadmill at a 5% grade for a workout at 50% of his peak $\dot{V}O_2$?

Metabolic Calculation Example

You have been directed to change the patient's workout in the previous question from a treadmill to a monarch cycle ergometer. His peak $\dot{V}O_2$ was 6 METS and he weighed 210 lbs. At what resistance would you set a Monarch bike at 60 rpm for a workout at 50% of his peak $\dot{V}O_2$? How many calories would the patient burn in a 30 minute workout at this workload?


Body Weight Conversion

Substitution into and then solving the equation for kg of resistance


$$\frac{10.5 \text{ ml}}{\text{kg}} = \left[\frac{1.8 \times (6 \times 60 \times \text{kg})}{95.5}\right] + 7$$

10.5 = kg(6.79) + 7
.52 = kg

Caloric expenditure calculation $1002.75 \text{ ml} \cong 1 \text{ liter } O_2 \text{ x} \frac{5 \text{ kcal}}{\text{ liter } O_2} \text{ x} 30 \text{ min} = 150 \text{ kcal}$

the unit on the "10" in the above equation is : $mI O_2/liter of blood$ $mI O_2/100 ml of blood$

Rest & Exercise Oxyhemoglobin (De) Saturation Curves

Metabolic Calculation Example

A pulmonary patients is being intra-arterially monitored for AVO2Diff which was found to be 4.228 ml%. His [Hb] is 16 g%, his current arterial O2 sat 85%, and his current venous O2 sat is 70%. Assuming his venous sat does not change, what must his arterial O2 sat be to raise his AVO2Diff to around normal levels (about 6 ml%)?

$$\begin{pmatrix} 1.34 & x & [Hb] & x & SaO_2 & x & 10 \\ \frac{mIO_2}{g Hb} & \frac{g Hb}{100 ml blood} & \frac{MO_2}{2 sat} & \frac{g Hb}{g Hb} & \frac{MO_2}{2 g Hb} & \frac{g Hb}{100 ml blood} & \frac{MO_2}{2 sat} & \frac{g Hb}{100 ml blood} & \frac{MO_2}{2 sat} & \frac{G Hb}{100 ml blood} & \frac{G$$

(SaO2) = .982 or 98%