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Regression & Non-parametric Statistics

Reading: Huck pp 416 - 513



Regression - the statistic of prediction

• Types of Regression:

• bivariate (two variable) regression - also called simple linear regression

• similar to Pearson correlation

• one independent or predictor variable, one dependent or criterion variable

• multiple regression

• more than one independent variable, one dependent variable

• logistic regression

• using one or more independent variables to predict dichotomous classification

• example:  using blood pressure, cholesterol levels, and whether or not one is a 

diabetic to predict whether or not a person will have a heart attack within the next 

year (similarly,  the odds ratio or relative risk of having a heart attack in the 

next year can be predicted)

• Uses of regression:

• prediction 

• examples:  predicting GRE scores from undergraduate GPA

predicting changes in HDL-C with exercise from fitness & lipid variables

• explanation (which is, in fact, “backward prediction”)

• example:  using attitudes toward health to explain why people exercise

using family & health belief information to explain why people smoke
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Simple Linear Regression

• the regression line:   Y’   =   a +   b (X) 

• Y’ is the predicted value of the dependent variable

• a is a constant - represents where regression line intercepts the vertical axis

• b is non-standardized regression coefficient - slope of regression line

• X is the known score or number of the independent or “predictor” variable
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Relationship between ANOVA and Regression
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If we made the analysis above for each data point, we could arrive at a sum of squares 

then a variance (mean square) for both error and the regression.  This would facilitate 
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Example of Simple Linear Regression

• A researcher wishes to determine if systolic blood pressure can be predicted using 

weight.  Twenty subjects were recruited and were assessed for weight and systolic 

blood pressure.  Simple linear regression analysis was performed to test the null 

hypothesis that no relationship exists (b = 0).

Variable: SBP

Sum of         Mean

Source          DF      Squares       Square          F Value       Prob>F

Model            1    4210.38190   4210.38190       54.538       0.0001

Error           18     1389.61810       77.20101

C Total        19     5600.00000

Root MSE       8.78641       R-square       0.7519

Dep Mean     140.00000     Adj R-sq        0.7381

C.V.                   6.27601

Parameter Estimates

Parameter          Standard            T for H0:

Variable  DF      Estimate              Error             Parameter=0    Prob > |T|

INTERCEP   1     75.754597    8.91856647         8.494                 0.0001

WEIGHT       1      0.378359     0.05123363         7.385                 0.0001

Standard error of the estimate -

the standard deviation of the   

residuals.

The “smaller” the SEE, the 

smaller the variability in the 

residuals and the better "fit" the 

regression line



• Assumptions for regression:
• for each value of the predictor variable, the possible true values for the 

corresponding observed dependent or “criterion” variable are normally 

distributed and have homogeneous variances.

• can be checked by plotting predicted values and residuals

• also a good way to spot "outliers"
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Multiple Regression

• the regression line: Y’ =  a  +  b1 (X1) + b2(X2) + b3(X3)…

• Y’ is the predicted value of the dependent variable

• a is a constant - represents where regression line intercepts the vertical axis

• b is regression coefficient - represents the mathematical contribution of the 

corresponding X variable to the overall regression

• the sign of the b coefficients describes the nature of the relationships (direct or 

inverse) of the corresponding predictor variable with the criterion variable

• caution: the b coefficients must be standardized before comparisons can be 

made regarding the amount of variation contributed by each corresponding predictor 

variable.  This will not be accurate however, if there is a significant relationship 

between any of the predictor variables

• collinearity or multicollinearity

• standardized regression coefficients are called beta weights and are represented by 

the greek letter b

• X’s are the actual known score - the predictor variable values

• dummy variables: coding 0's or 1's for dichotomous variables (gender)

• dummy variables other than 0's or 1's are often used but should not be because 

the numbers (1,2,3,4,…etc.) have no quantitative meaning; ie. you cannot 

assume that the dependent variable changes twice as much with a dummy 

coded predictor variable with a X of 4 as with a dummy coded X of 2.



Example of Multiple Linear Regression

• A researcher wishes to determine if systolic blood pressure can be predicted using 

weight and total cholesterol.  Twenty subjects were recruited and were assessed for 

systolic blood pressure, weight, and total cholesterol.  Multiple linear regression 

analysis was performed to test the null hypothesis that weight and total cholesterol 

have no predictive value (all b's = 0).

Variable SBP

Sum of         Mean

Source          DF      Squares       Square           F Value       Prob>F

Model            2   4320.70287    2160.35143       28.708         0.0001

Error            17   1279.29713        75.25277

C Total         9    5600.00000

Root MSE       8.67484       R-square       0.7716

Dep Mean     140.00000     Adj R-sq        0.7447

C.V.                   6.19631

Parameter Estimates

Parameter      Standard           T for H0:

Variable  DF          Estimate         Error              Parameter=0    Prob > |T|

INTERCEP   1    122.761115   39.80913557         3.084              0.0067

WEIGHT       1      0.230775    0.13197030            1.749              0.0984

TCHOL         1     -0.090914    0.07508677           -1.211              0.2425



Types of Multiple Regression

• Nonlinear Regression:  Y’ =  a  +  b1 (X1) + b2(X2)
2

• also referred to as polynomial regression

• used if a non-linear (curvalinear) relationship is suspected between predictor 

variables & the criterion variable

• example:  the relationship between age and maximal bench press poundage would 

be a parabolic (inverted “U”) relationship with an equation similar to the one above.

• Stepwise Multiple Regression
• variables are entered into the regression one at a time in an effort to determine 

which variable contributes most to the regression ("gives the most bang for the 

buck")

• usually, the coefficient of determination ( R2 ) for each equation is 

compared to determine if adding additional variables to the model 

significantly increases the capability of the model to predict the criterion 

variable.  Other statistics such as Mallows CP may be used to determine 

which regression model is best.



Non-Parametric Statistics

• Non Parametric Statistics: statistics that do not require the dependent
variable to be normally distributed (there may not even be a true       
dependent variable)

• examples of variables that are not normally distributed:

• eye color, % of people who own a lawn mower, the academic rank of class 

members, political and moral opinions, the number of meals a person eats every 

year containing < 30% fat

• Advantages of  Non-Parametric Statistics:

• no restriction of normality and variance homogeneity

• computations (even by hand) are quick and speedy

• Disadvantages of  Non-Parametric Statistics:

• less "powerful" than parametric statistics

• more subjects needed to reject the null hypothesis

• remember - statistics with the most power are parametric statistics when 

assumptions are met

• since only nominal or ordinal data can be used, these methods may not fully 

utilize all of the information contained in the data



Non-Parametric Statistics
• The Chi Square test - type 1: goodness of fit

• tests whether or not the frequencies or proportions found in the categories of some 

nominal (categorical) variable fit some pre-conceived or expected pattern

• are the frequencies equal?  do they follow hypothesized proportions?

• example:  a researcher wishes to determine if the percentage of people with high 

blood pressure (SBP > 140) is equally distributed among a sample of Caucasians 

and African-Americans (normally 1 in 5 adults are hypertensive)

RACE          BPSTATUS

Observed ‚
Expected ‚(based on 1/5 x 9 =1.8)

‚
‚HYPER   ‚NORMO   ‚  Total

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
AA       ‚      9 ‚      0 ‚      9

‚    1.8 ‚    7.2 ‚  
‚        ‚        ‚
‚        ‚        ‚

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
C        ‚      2 ‚      7 ‚      9

‚    1.8 ‚    7.2 ‚  
‚        ‚        ‚
‚        ‚        ‚

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Total           11      7        18

Statistic   DF Value  Table Value (.05)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Chi-Square  1  36.03       3.84

Since the calculated value exceeds 

the table value reject the null 

hypothesis that hypertension is equally 

distributed among Caucasians and 

African Americans in this sample

c2 = S (observed - expected)2     

expected

(9 - 1.8)2 + (0 - 7.2)2 + (2 - 1.8)2 + (7 - 7.2)2  

1.8              7.2             1.8             7.2

= 36.03



Non-Parametric Statistics
• The Chi Square test - type 2: test of independence (contingence) 

• tests whether or not two categorical variables are independent of one another

• example:  a researcher wishes to determine if race and family history are 

independent of one another with regard to heart disease risk

• H0:  race (RACE) is independent of family history (FAMHIST)

FAMHIST
Observed ‚
Expected ‚ (row total x column total) / grand total
Percent  ‚
Row Pct  ‚
Col Pct  ‚1       ‚2       ‚3       ‚  Total
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
AA       ‚      2 ‚      2 ‚      5 ‚      9

‚      4 ‚    2.5 ‚    2.5 ‚
‚  11.11 ‚  11.11 ‚  27.78 ‚  50.00
‚  22.22 ‚  22.22 ‚  55.56 ‚
‚  25.00 ‚  40.00 ‚ 100.00 ‚

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
C        ‚      6 ‚      3 ‚      0 ‚      9

‚      4 ‚    2.5 ‚    2.5 ‚
‚  33.33 ‚  16.67 ‚   0.00 ‚  50.00
‚  66.67 ‚  33.33 ‚   0.00 ‚
‚  75.00 ‚  60.00 ‚   0.00 ‚

ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Total           8        5        5       18

44.44    27.78    27.78   100.00

DF  Value  Prob
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Chi-Square  2  7.200  0.027
Phi Coeff.      .632

Since p < .05 we reject the null 

hypothesis that race is 

independent of family history

The special phi coefficient shows 

the strength of association 

between RACE & FAMHIST to be 

moderate

Contingency 

Table

RACE



Non-Parametric Statistics 
tests of significance for ordinal data

• Mann Whitney U - test

• test for two independent samples of data that are in rank (ordinal) form

• tests the medians of samples for significant differences

• results in a z-score which can be compared to table values for a given level of a

• non-parametric analog of an independent t - test

• can be used for continuous data that are known not to be normally distributed

• Wilcoxin sign rank test

• test for two dependent samples of data that are in rank (ordinal) form

• non-parametric analog of an dependent or correlated t - test

• Kruskall-Wallace test

• test for two or more independent samples that are in rank (ordinal form)

• results in an H statistic that can be tested with a c2 distribution

• non-parametric analog of the one way ANOVA

• Friedman test

• test for two or more samples in rank (ordinal) form that are correlated

• results in a c2 statistic that can be tested with a c2 distribution

• non-parametric analog of a one-way repeated measures ANOVA


