KINE 601

"Statistical Significance" and Sampling

Reading: Huck pp 99 - 232

Review of Sampling & Inference Concepts

- **Population:** <u>all</u> members of a specified group
- **Sample:** a defined <u>subset</u> of the population
- Parameter: a numerical or nominal characteristic of a population
- Statistic: a numerical or nominal characteristic of a sample which represents the population parameter

Review of Types of Hypotheses

• <u>Hypothesis</u>

- speculation, educated guess
- Research (Alternative) Hypothesis
 - proposed relationship between independent and dependent variables
 - hypothesis accepted as true if the null is rejected

Null Hypothesis

- hypothesis for statistical testing
- stated in negative form
 - "there will be no significant difference...."
 - "no relationship exists between...."
- although true null hypotheses are seldom stated formally in the literature, they are always "implied" to exist
 - null hypotheses are used because:
 - test statistics require that "effects" are assumed to be nil
 - If the null is rejected, the alternative hypothesis is easy to interpret

Research Study Outcomes & Errors

Truth in the Population

		treatment has no effect (H _o is true)	treatment has an effect (H _o is false)
Conclusion Reached in the Study	effect is found to be present (reject H _O)	incorrect conclusion probability (p) = α Type I error	correct conclusion probability (p) = 1 - β Statistical "power"
	no effect found (accept H _O)	correct conclusion probability (p) = 1 - α	incorrect conclusion probability (p) = β Type II error

notes: 1. a Type I error rate must be selected for each statistical comparison performed

- the more analyses you perform, r u chances of making a Type I error
- 2. statistical power: the chance of finding an effect when an effect is indeed present

the Normal Distribution

The Concept of Statistical Significance

- H₀ unknown distribution of means where no effect is present (null hypothesis)
- H_a distribution of means where treatment effect is present (alternative or research hypothesis)
- **X** dependent variable mean after treatment

note: as α gets smaller, 1- β also gets smaller

(95% of means in H₀ distribution lie to the left, 5% to the right)

corresponds to an α level of .05

Types of Probability Samples

- Simple Random Sample: <u>all</u> members of a population have an equal chance of being selected
 - selection of one element does not affect selection of another
- Stratified Random Sample: taking a sample from a sub-population in such a way that identified subgroups are represented
 - ensures that sample is truly representative of population
 - quota sample: stratification without randomization
 - sample must have X% of subjects with characteristic 1, Y% with characteristic 2...
- **Systematic Sample:** taking every **n**'th element of a population
 - more complex formulae may be used for selection
- Cluster Sample: random selection of groups or blocks that have a desirable trait or characteristic
 - example: randomly select 10 hospitals for employee Hepatitis B testing

Types of <u>Non-Probability</u> Samples

- Convenience Sample: a sample consisting of a group or groups that are readily available to the researcher
 - examples:
 - standing in a mall and asking people to complete surveys
 - professor using his class members
 - serious inference limitations

Purposive Sample: selection based on on "inclusion criteria"

- selecting subjects based on a characteristic, quality, or trait they possess
- used often in human research
- no attempt made at randomization r inference is limited
 - sometimes invalid inference claims are made in article conclusions
- example: postmenopausal women taking hormones and exercising 3 days/wk
- it is sometimes necessary to make extensive efforts to "recruit" subjects
 - recruiting methods should be described in detail in manuscript or presentation
 - snowballing: using current subjects to recruit new ones

Sampling Problems

Survey Response Rates: 60% - 80% required

- Portney & Watkins 1993, Gay 1981
- Ways of addressing non-response bias:
 - follow up mailing(s)
 - acknowledgement in the manuscript
 - interview some of the non-respondents compare results with respondents

Sampling Error

- the difference between a parameter and its representative statistic
- standard error (of the mean) standard deviation of a group of sample means
 - may sometimes be given in conjunction with treatment resultant means instead of standard deviations
 - <u>estimated</u> by any sample standard deviation divided by square root of sample subject number

Sampling Problems

Sample Size: - how many subjects do you need ?

- descriptive research 10% 20% of the population
- correlational causal comparative studies: = 30 subjects per experimental unit
- tightly controlled experimental studies: =15 subjects per experimental unit
- depends on:
 - desired statistical power the larger the subject number, the greater the power
 - subject number is the most potent influence on statistical power
 - <u>effect size (ES)</u> the extent or magnitude of the experimental effect
 - "raw" ES: posttest mean pretest mean
 - more commonly, standardized ES's are used (raw ES / variability)
 - small ES = .2 medium ES = .5 large ES = .8
 - the larger the anticipated effect size, the smaller the required sample number
 - <u>significance criterion</u> (α : the statistical probability of making a Type I Error)
 - the smaller the α level, the larger the required sample number
 - <u>type of statistic used</u> complex designs and statistics necessitate larger samples
 - more than one independent and / or dependent variables r larger samples
- inadequate sample size adversely affects both internal & external validity

Population Estimates taken from Samples

- sample mean (y) is a <u>point estimate</u> of population mean (μ)
- <u>interval estimates</u> for μ can be obtained using <u>confidence intervals</u>
 - CI: $\mathbf{y} \pm \mathbf{z}_{\alpha/2}$ (standard error)
 - example: construct a 95% confidence interval for the population mean (μ) when the sample yields: y = 379.2, n = 36, s = 124.
 - since we desire a 95% CI, α = .05 and α / 2 = .025 **r z** ₀₂₅ = 1.96
 - standard error = $s / \sqrt{n} = 20.7$
 - $CI = 379.2 \pm 1.96(20.7) = 379.2 \pm 40.6$
- 95% of the confidence intervals constructed like this will contain actual μ
- confidence intervals are used to estimate numerous kinds of parameters

Hypothesis testing

Steps in hypothesis testing

- State the null hypothesis to be tested
 - H₀: no "difference" or "relationship" exists
- State the alternative (research) hypothesis
 - H_a: usually the simple alternative that a difference or relationship does indeed exists
 - some studies specify the direction of the difference (one vs. two "tailed" tests)
 - if you are "sure" of the direction, you can increase your statistical power
- Select a level of significance
 - "comparisonwise" vs "experimentwise" error rates
 - dividing up the α (Bonferroni technique)
- Determine sample size (statistical power), collect and summarize data
- Perform a statistical analyses (refer to a decision making criterion)
 - obtain a "calculated value" of a statistic and compare to "critical value"
 - reject H_0 if "calculated value" is \geq "critical value"
 - obtain "p value" (probability value) and compare it with α level
 - obtain a measure of relationship or strength of association
- Accept or reject the null hypothesis
- Evaluate "statistical" significance versus "practical" significance

Interpreting "p-values" & "Degree of Significance"

*p***-values** - the exact probability of a type I error (α)

- the "margin" by which **H**₀ was rejected or accepted
- results of statistical analyses are usually presented in one of two ways:
 - 1. $p > \alpha$ or $p < \alpha$
 - " a significant difference was found to exist between groups (p < .05) "
 - " the correlation coefficient was not statistically significant ($p \ge .05$) "
 - 2. the exact α value is given as p = .xxxxx
 - " significant differences were found between groups X and Y (p = .0128) and between groups A and B (p = .003) "
 - the *p* value does <u>not</u> indicate ES or the degree of difference between H₀ and H_a
 - indicates only the degree to which difference could have occurred by chance
 - the term " highly significant " appears often in the literature implying that the independent variable made a huge difference in dependent variable scores when, in fact, this may not be the case
 - remember, an inverse relationship exists between sample size and *p*-value
 - with a large sample, the *p*-value can be very low, even when ES is small
 - larger sample r smaller treatment variance r more power
 - some authors report results that are "borderline" significant (p = .053)