
STRESS - STRAIN CURVE OF MUSCULOTENDINOUS TISSUE

Microtrauma

- Microtrauma ("overuse syndromes" "cumulative cell-matrix adaptive response")
- Repetitive maximal or submaximal movement in the "elastic range" causes:

 - Overwhelming of cell metabolism → can't maintain structural integrity by ↑ tissue synthesis
 - Tissues that are formed in response to this overload stimulus are of inferior quality
- Responsible for 30% 50% of sports injuries (Herring & Nilson, 1987)
- These types of injuries are very "individualistic" in nature
- Structures most often affected in microtraumatic syndromes:
 - Bursa synovial fluid sacs that I friction between: skin-bone, tendon-bone, muscle-muscle
 - Tendon sheath (paratenon fat & areolar tissue "extended bursa" surrounding tendon)
 - Tendon (tendonopathies)
 - Bone (stress fractures)
 - Muscle (delayed onset muscle soreness)
- Symptomology progression of microtraumatic overuse syndromes:
 - Phase 1: pain <u>after</u> activity (immediate 12 hours) which is palpable at injury site
 Phase 2: pain <u>during & after</u> activity no significant impairment eventually resolves
 Phase 3: pain <u>during & after</u> activity significant impairment eventually resolves
 Phase 4: pain all the time accompanied by significant impairment no resolution

Currently Accepted Theory as to the Cause of DOMS

Dr. Bob Armstrong - TAMU muscle biology laboratory - 1991

- Eccentric contractions → sarcomere inhomogeneities + sarcolemma (membrane) disruption
 - Disturbance in Ca++ homeostasis reduces ATP production → ↓ [ATP]
 - Intracellular [Ca++] faster than Calcium extrusion mechanisms can pump it out
 - Cellular membrane destruction → cell death
- Prostaglandin & histamine \rightarrow edema and inflammation \rightarrow stimulation of free nerve endings
- f protease & phospholipase activity begin to degrade the myofibril & associated membrane
- Phagocytes & macrophages invade cell 2-6 hours after the injury continues for 2-3 days
- Cells adapt → future bouts of the same exercise causes less injury

Armstrong et al. (1991) Sports Medicine 12 (3) 184-207

MRI of Delayed Onset Muscle Soreness

 Note 1 signal intensity in entire bicep compared to triceps

Tendinitis or Tendinosis ????

- **Tendinitis** inflammation of tendon (rare) inflammation of sheath is more common
 - the correct terms for inflammation of the tendon sheath are "tenosynovitis" & "paratenonitis"
- Tendinosis degeneration & deleterious changes in tendon without inflammation
- What most clinicians in the past have termed "<u>tendonitis</u>" is actually "<u>tendinosis</u>" or more generally, "<u>tendinopathy</u>"
 - Both tendinitis & tendonopathy can occur together!
- <u>Regardless, the following observations for the malady may be made:</u>
 - The problem is most often accompanied by :
 - tissue degeneration (necrosis) and vascular abnormalities (disorganized vascularization)
 - collagen disorganization & fiber separation by <u>mucoid</u> or <u>lipoid</u> ground substance (→ inferior tissue)
 - The problem may lead or contribute to complete or partial tendon rupture
 - Chronic tendonopathy → fibrinous adhesions → diminished tissue strength & function
 - <u>Although cause & etiology are debatable, recent opinions purport causes to be related to:</u>
 - The sliding of tendon over other structures (compressive forces)
 - Subjecting the tendon to loads close to tensile strength & exceeding its anabolic capabilities
 - Eccentric contractions
 - Negative direction on force velocity curve → what about plyometric training??????
 - Chronic anabolic steroid use → ↓ tissue quality and tensile strength → ↑ incidence of tendon rupture
 - Malnutrition influences: ↓ vitamins A & C, ↓ copper → ↓ collagen synthesis and crosslinking
 - Menopause $\rightarrow \downarrow [E_2] \rightarrow \downarrow$ connective tissue elasticity $\rightarrow \uparrow$ tendinitis & other overuse injuries
 - Note: Collagen production is impaired in smokers → Tendinopathies heal slower http://sportsmedicine.about.com/od/paininjury1/a/tendonitis.htm

General Steps in the Healing of Tendon Microtrauma Pathology

	5	57
<u>Stage</u>	Pathology, Healing, & Objectives	Treatment Implications
Inflammation (if present)	 † GAG & collagen synthesis Prevent prolonged course of inflammation (if present) 	 REST (<u>activity cessation</u>) NSAID's, oral corticosteroids
(days 1 - 6) Some authors: (day 1 or 2 only)	 Prevent injury to developing collagen 	 Low level ROM exercises Cryogenic therapy Load reducing devices: casting, bracing, heel lifts, etc.
Fibroplastic Proliferation (days 5 - 21)	 Trate of collagen synthesis by fibroblasts Synthesized collagen fibers need to be aligned 	 Low level / low duration exercise Stretching → align collagen Cryogenic-thermogenic therapy Ultrasonography - Laser Electricity → ↑ fibroblast activity
Remodeling Maturation (20 days – 6 months)	 f rate of crosslinkage formation & fibril size Replacement of initial and / or inferior tissues 	 Strengthening exercises 1 intensity & duration Stretching exercises to further stimulate collagen alignment

*

Note: almost all body tissues follow this paradigm of healing only with a different timeframe

Immobilization vs. Mobilization: A Fine Line

- Effects of immobilization on injured tendinous tissue
 - Protein degradation exceeds protein synthesis → net ↓ in collagen quantity
 - Reduction in the number of collagen crosslink bonds
 - Atrophy of tissues at myotendinous (muscle tendon) junction
 - 2% loss of total collagen mass at 9 weeks......27% loss at 12 weeks.

Benefits of mobilization (movement) on injured tendinous tissue

- The cross-sectional area of the healed tendon is greater
- Improvement in collagen fiber type and fiber arrangement in the repair
 - Type I most abundant type humans highest tensile strength of the 3 types
 - In tendons, muscle endomysium, fibrocartilage, bone, "final" scars
 - Type II found in hyaline cartilage
 - Type III found in granulation tissue, reticular tissue, & basement membranes
- Greater number of crosslink bonds
- Better quality of ground substance in the tendon

Common Therapies for Tendon Microtrauma NSAID drugs

- In the 80'S and 90'S, approximately 73% of studies show NSAID's to be effective in:
 - ↓ healing time
 ↓ inflammation
 - Other, more recent studies show no measurable benefit of NSAID's
 - Note: Approximately 50% of those using NSAID drugs will have adverse side effects

Corticosteroids

- Oral Corticosteroids: Short term use of such drugs as (MEDROL DOSEPACK, PREDNISONE) appear helpful for <u>some ailments</u> including:
 - Neuritis
- (Conditions where inflammation is indeed present)
- Bursitis

Paratenonitis

- Corticosteroid (Cortisone) Injections Injections:http://orthopedics.about.com/cs/paindrugs/a/cortisone.htm
 - Will reduce pain but usefulness in ↓ inflammation & ↓ healing time has not been proven
 - Side effects: collagen disarray, tendon rupture, skin depigmentation, atrophy at injection site
 - Used only after a 6-week trial of rest then re-conditioning
 - Used only when site of pain is palpable avoid injection directly into tendon (inject in sheath only)
 - Allow 2 6 weeks after injection before re-conditioning
 - Avoid more than 3 injections
 - Avoid injections just prior to competition (↓ pain → ↑ likelihood of injury exacerbation)

Surgery - excision / debridement of damaged tissue - release & repair

- Replace "bad scar" with "good scar" not always successful (success rate 70% 90%)
- Does not remove microtraumatic injury stimulus same recurrent stimulus → problems can re-appear

Chondromalacia – "Runner's Knee" – "Patellofemoral syndrome"

<u>Chondromalacia</u> – degeneration & inflammation of articular cartilage:

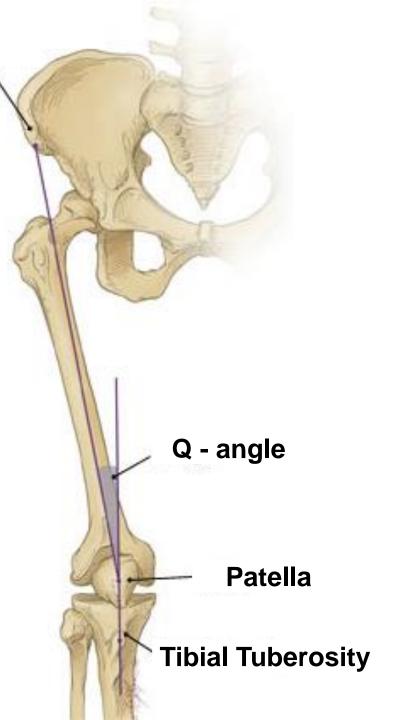
- Usually affects the underside of the patella (most common)
- Often involves bottom of femur and top of tibia
- More common in women (greater Q-angle → ↑ lateral forces on kneecap)

<u>Causes</u>

- Excessive running with tight hamstrings, tight calf muscles, pronation from ITB syndrome
- Muscle imbalance results in a tracking abnormality of the tibia in the femoral groove
 - Vastus lateralis tends to be more powerful than the vastus medialis

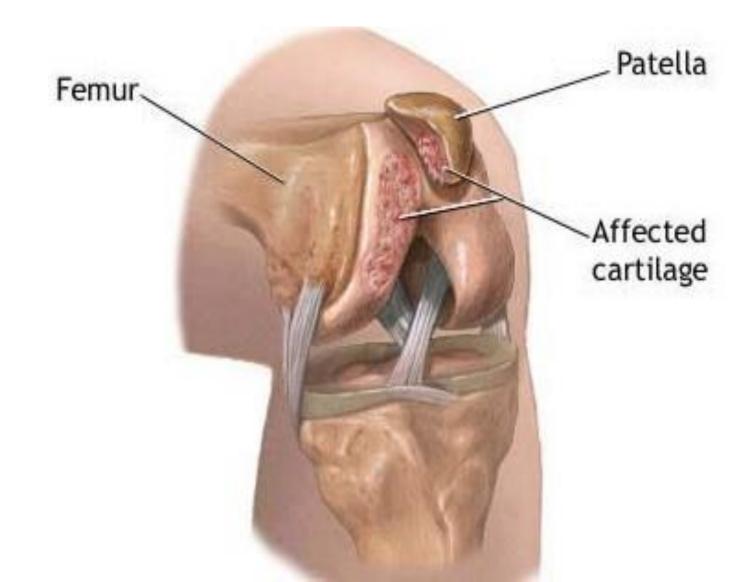
Risk Markers & Clinical Signs

- Q-angle > 15 degrees (associated with Gena Valgum "knock knees")
- Pain with contraction of quadriceps while patella is held in groove

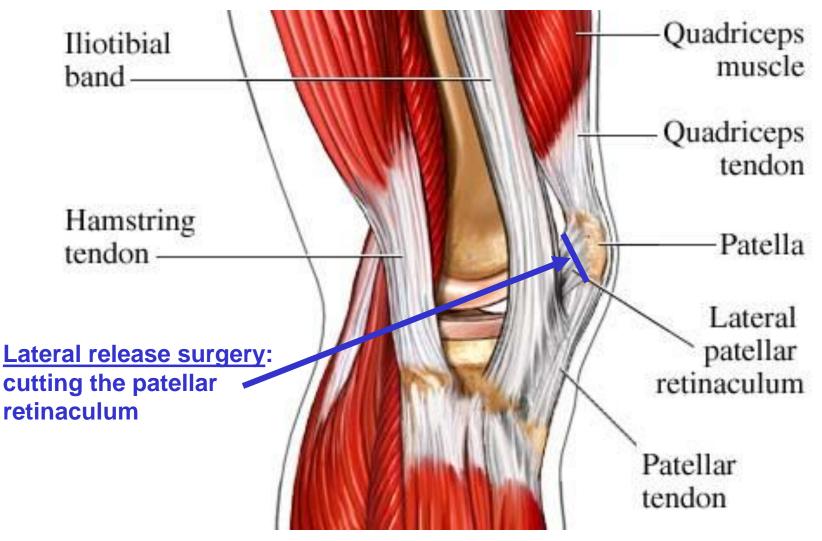

http://www.return2fitness.co.uk/injury_advice/knee_injuries/cmp.php

<u>Treatment – 1st: removal of inflammatory stimulus</u>

- RICE NSAID's
- Orthotics to correct pronation
- Stretching to flexibility in hamstrings, calf muscles, & ITB
- Strengthen quads, hamstrings, hip flexors, hip adductors, and hip abductors
- Avoid downhill running (eccentric contractions) when returning to activity
- Surgery
 - 1. Lateral release (cutting lateral patellar retinaculum → better patella tracking)
 - 2. Smoothing down the underside cartilage of the patella
 - Successful about in 90% of cases


Anterior Superior Illiac Spine

The Q - Angle


Chondromalacia – "Runner's Knee" – "Patellofemoral syndrome"

Left Knee

Chondromalacia – "Runner's Knee" – "Patellofemoral syndrome"

Lateral release Using Thermal Cauterizing Scalpel

Chondromalacia – "Runner's Knee" – "Patellofemoral syndrome"

Arthroscopic / Laser Correction of Chondromalacia

White "whispy" material is roughening of the cartilage of the underside of the patella

New smooth surface after laser removes damaged cartilage

Patellar Tendinitis (Tendinosis / Tendinopathy) – "Jumper's Knee"

Patellar tendinitis – degeneration and or inflammation of patellar tendon or tendon sheath

- Usually affects participants of "explosive" sports involving jumping or quick movements
 - Basketball & volleyball players most affected (frequent "stops", "starts", & "jumps")
- Once again, the controversy tendinitis vs. tendinosis (tendinopathy)
 - Most now agree that most tendon overuse injuries involve little inflammation
 - Mucoid deposits (soft greenish brown disorganized tissues) are present
 - Patellar tendonopathy may be accompanied by micro-ruptures and necrosis
 - It may predisposes the tendon to rupture

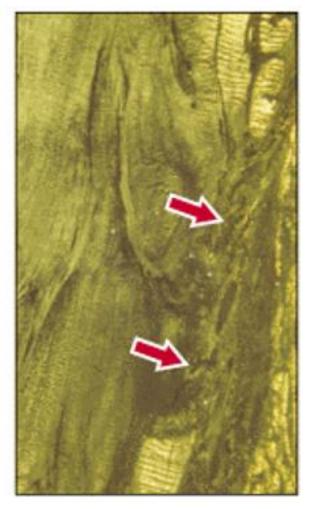
http://www.return2fitness.co.uk/injury_advice/knee_injuries/jumpers_knee.php

<u>Causes</u>

- Excessive activity (especially a rapid increase in the frequency or intensity of training)
- Improper mechanics of training
- Excessive weight on person doing a lot of weight bearing exercises

Symptoms

- Pain / tenderness in the patellar tendon below the knee when jumping, running, or walking
- Pain or "tightness" in the knee when bending, squatting, or straightening the leg


Treatment- first, removal of injury stimulus

- RICE emphasis on rest followed by quadricep strengthening exercises
- Ultrasound & laser photostimulation → increase collagen synthesis
- NSAID's & corticosteroids have, for the most part, found to be ineffective
- Surgery
 - Excision of the damaged portion of tendon

Patellar Tendinosis

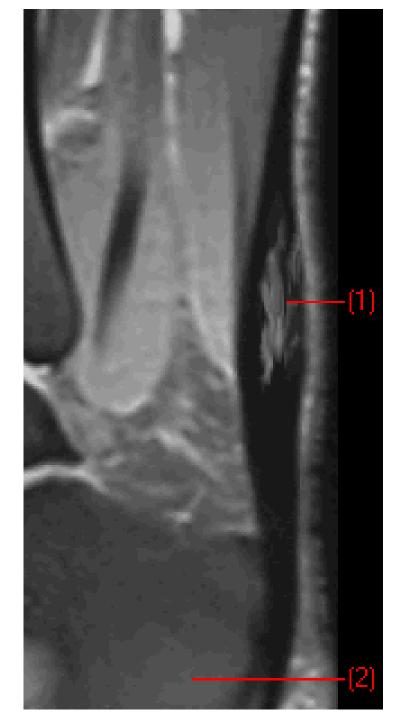
Normal Patellar Tendon

Patellar Tendinosis – note greenish-brown mucoid appearance with tissue degeneration (red arrows)

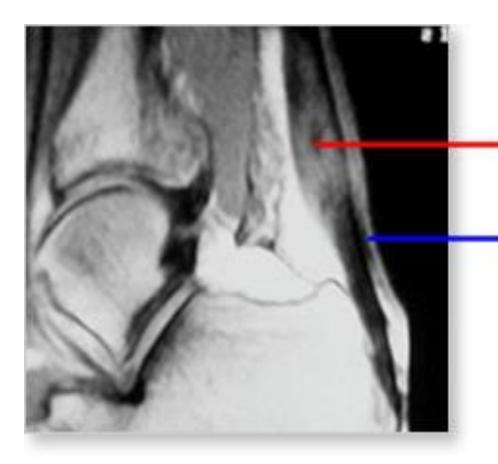
Achilles <u>Tendinosis</u>

- [1] ↑ signal intensity → fluid + tissue degeneration
 - [2] Calcaneous

Histopathology of Achilles Tendinosis


- tascularity (neovascularization)
- Collagen fiber disorganization
- Thinning of tendon fibers
- Mucoid or lipoid deposits between fibers
- Inflammatory cells at sites of micro-rupture (rare)

Symptoms & Diagnosis


- Painful push-off when walking or running
- Palpable nodule on achilles tendon
- Tendon may be swollen or thickened

Treatment

- Cessation of activity and / or immobilization
- Stretching exercises
- Modalaties
- Heel lift orthotics
- Surgery in extreme cases
- Gradual return to activity

MRI of Achilles Tendinosis

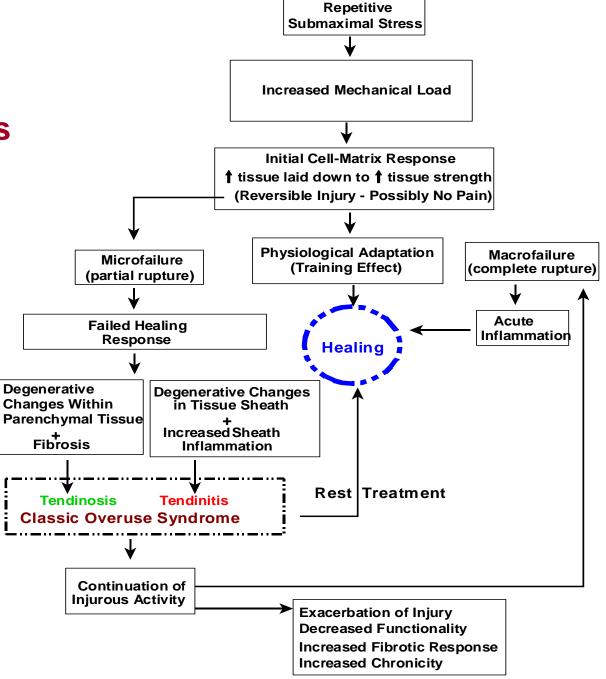
Here again is an MRI of a chronic degenerative tendinopathy. Note the the thickening and swelling (**†** fluid) which is visible as the "whispy" light gray color (red line) on the regular black Achilles Tendon "tube" (blue line)

Achilles Tendinosis Surgery

Achilles tendon is exposed revealing a split in the tendon

The necrotic portion of the tendon is removed

The ends of the tendon are brought together and sutured



True Achilles <u>Tendonitis</u> (Inflammation of Paratenon)

- Diagnosed by pain syndrome and palpating the tendon where it is slightly thickened and tender along its inner edge, about four-centimeters above the attachment to the heal bone
- May be caused by excessive pronation in runners
- Treated with cessation of activity / RICE, physical therapy, orthotics to I pronation, NSAIDS, heal lifts to reduce stress on tendon
- Physical therapy usually has the patient back to activity in 2 3 months
- Severe cases: surgery may be needed to remove inflamed paratenon

http://emedicine.medscape.com/article/85115-overview

Healing of Microtraumatic Tendinous Injuries

Stress Fractures (Hairline Fractures)

Bone Stress Continuum:

Stress Reaction:

- Accelerated adaptive bone remodeling
- Most often asymptomatic
- Occurs most often in tarsals, metatarsals, femur, & tibia
- Sometimes seen on X-ray as increased callus ("bone") deposits

Stress Fracture:

- Complete defect or "crack" in the bone
- Easily seen on X-ray

Stress Fractures

- Occurs only in race horses, greyhounds, & man
 - Intensity and / or volume of activity is not natural
- Most stress fractures heal by themselves without clinical manifestations

• Causes:

- Repetitive torque across a bone http://orthoinfo.aaos.org/topic.cfm?topic=A00112
- Weight bearing impact forces
 - Bone does not adapt as well as muscle to impact forces
- Inability of weak musculature to facilitate shock absorption
- Low bone mineral density
- Structural malalignments (leg length discrepancy)
- Stress fractures **†** risk of complete fracture at the stress fracture site
- Early stage stress fractures (stress reactions) don't show up well on X-rays
 - Better detected by bone scan shows up as "hot spots" (areas of increased remodeling)
- Symptoms:
 - Tenderness & pain over the fracture site and pain during activity
 - Early on, pain is light and occurs at end of activity....later....pain is more severe and occurs earlier
 - Pain relieved by rest but becomes progressively more frequent & persistent
 - Overlying soft tissue may exhibit swelling
 - Ultrasound or struck tuning fork placed over the fracture site will elicit pain
 - Muscle atrophy may occur at or near the stress fracture site

Stress Fractures

• Types of stress fractures:

- Oblique / Transverse
 - Angled to / perpendicular to the long axis of the bone
 - Most common
 - Dangerous due to the chance of complete fracture & bone "displacement"
- Longitudinal (paralell to the long axis of the bone)
- Compression

• Two Common Examples of Stress Fractures:

- Tibial stress fracture in runners
 - Weight bearing impact related
- Humerus stress fracture in a "thrower" (pitcher, javelin thrower, etc.)
 - Related to muscle trying to accelerate a "resisting" bone (torque)

Stress <u>Reaction</u> of Left Tibia

Bone Scan

"Hot Spot" may indicate fracture or stress reaction

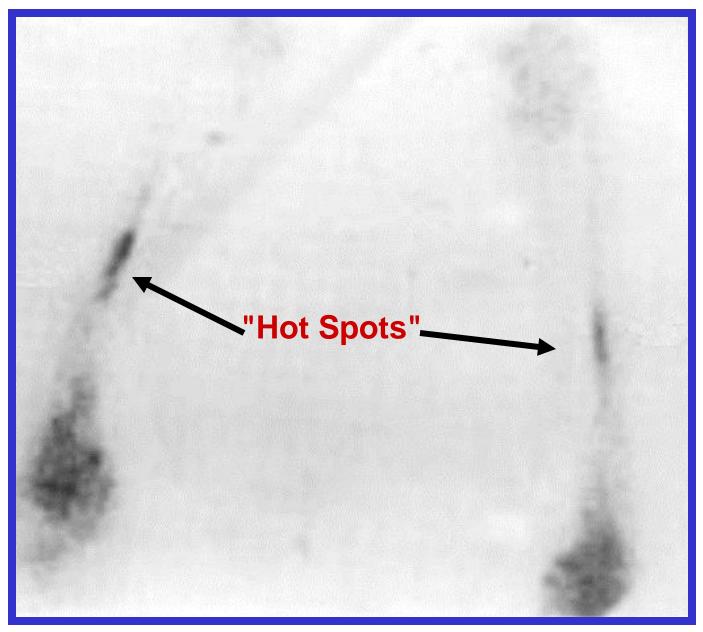
X-ray Corresponding to Bone Scan

Stress

Site

Reaction

Stress <u>Fracture</u> of Tibia in a Runner


Note clearly defined "Crack" in addition to Extra Callus

"Crack"

MRI of Stress Fracture of the Calcaneous

Bilateral Stress Fractures of the Ulna in a Weight Lifter

Stress Fractures

Stress Fracture of 3rd Metatarsal in a Runner

Note the extra callus increasing the girth of the bone

