

KINE 439 - Dr. Green

Section 1

Clinical Cardiovascular Anatomy & Physiology

Concepts, Definitions, & Principles

Definitions, Concepts, and Hemodynamics

The Human Heart ...

Is about 4.8 inches tall and 3.35 inches wide
Weighs about .68 lb. in men and .56 lb. in women
Beats about 100,000 times per day
Beats 2.5 billion time in an average 70 yr. lifetime
Pumps about 2000 gallons of blood each day
Circulates blood completely 1000 times each day
Pumps blood through 62,000 miles of vessels
Suffers 7.2 mil. CAD deaths worldwide each year

The Normal Heart and Regional Circulation

> Anterior Cutaway View

The Normal Heart - Coronary Artery Anatomy

u

m

e

n

Layers of the Arterial Wall

Media

Intima

Media: smooth muscle cells

Intima: endothelial cells

Adventitia

Left Ventricular Volumes - Definitions

End Diastolic Volume (EDV)

Volume at the end of diastole (end of ventricular filling). In a healthy heart this is directly proportional to **venous return**

End Systolic Volume (ESV)

Volume at the end of systole (end of ventricular contraction)

SV

Stroke Volume (SV) = EDV - ESV

Ejection Fraction (EF) = SV EDV NOTE: Resting Ejection Fraction (EF) is the best indicator of both <u>heart</u> <u>performance</u> and <u>heart</u> <u>disease prognosis</u>

Left ventricular norm for EF at Rest: approximately 62% Left Ventricular norms for Max Exercise: approximately 80%

Changes in Left Ventricular Volumes with Exercise of Increasing Intensity

Definitions

- Cardiac Output: (Q) = HR X SV
- Cardiac Index = Q / body surface area
- <u>Preload</u>: (EDV) volume of the left ventricle at the end of diastole dependent on <u>venous return</u> & <u>compliance ("stretchability") of ventricle</u>
- <u>Afterload</u>: resistance to ventricular emptying during systole or the amount of pressure the left ventricle must generate to squeeze blood into the aorta. In a a healthy heart this is synonymous with <u>Aortic Pressure</u> & <u>Mean Arterial Pressure (MAP)</u>
- Frank Starling Law of the Heart: the heart will contract with greater force as preload (EDV) is increased more blood in more blood out
- Myocardial Contractility: the squeezing contractile force that the heart can develop at a given preload
 - Regulated by:
 - Sympathetic nerve activity (most influential)
 - Catecholamines (epinephrine norepinephrine)
 - Amount of contractile mass
 - Drugs

Starlings Law of the Heart and Contractility

The greater the EDV (blood going in the heart), the more blood comes out of the heart

Influences on Myocardial Contractility

Contractility related to :

Exercise: - **↑** β sympathetic adrenergic nerve output Catecholamines: - Epinephrine & Norepinephrine Excitement or Fear: - Fight or flight mechanism Drugs: - Digitalis & Sympathomimetics

Contractility related to:

Loss of contractile mass: - Most likely due to heart attack Myocardial muscle disease: - Cardiomyopathy Drugs: - Anesthetics, Barbiturates

Definitions

Arteriovenous Oxygen Difference (AVO₂D) the difference in oxygen

content between arterial and venous blood

• measured in ml% - ml O₂ / 100 ml blood

Oxygen Consumption (VO₂) - the rate at which oxygen can be used in energy production and metabolism

- "absolute" measures: LO_2 / min , mlO_2 / min
- "relative" measures: ml O₂ / kg body wt. / min

• Fick equation: $\dot{VO}_2 = \dot{Q} \times AVO_2D$

- Maximum Oxygen Consumption (VO_{2max}) maximum rate at which a person can take in and utilize oxygen to create usable energy
 - defined as plateau of consumption rate increase
 - often estimated with VO_{2peak}
- Myocardial Oxygen Consumption VO₂ of the heart muscle (myocardium)
 "estimated" by RPP: HR X SBP

• Functional Aerobic Impairment				
predicted VO _{2max} - attained VO _{2max}				
predicted VO _{2max}				

mild	27% - 40%
moderate	41% - 54%
marked	55% - 68%
severe <u>></u>	69%

Definitions

- Systolic Blood Pressure (SBP) pressure measured in brachial artery during systole (ventricular emptying and ventricular contraction period)
- Diastolic Blood Pressure (DBP) pressure measured in brachial artery during diastole (ventricular filling and ventricular relaxation)
- Mean Arterial Pressure (MAP) "average" pressure throughout the cardiac cycle against the walls of the proximal systemic arteries (aorta)

• estimated as: .33(SBP - DBP) + DBP

- Total Peripheral Resistance (TPR) the sum of all forces that oppose blood flow
 - Length of vasculature (L)
 - Blood viscosity (V)
 - Vessel radius (r)

TPR = (8)(V)(L) (π)(r⁴)

Cardiovascular Hemodynamic Basics

Flow
$$(\dot{Q}) = (\pi) (Pa - Pv) (r^4)$$

(8) (V) (L) Normally Resting \dot{Q} is about 5 - 6 liters / minute

- V = viscosity of fluid (blood) flowing through the pipe
- L = length of pipe (blood vessel)
- r = radius of the pipe (blood vessel)
- Pa = aortic pressure
- P_v = venous pressure

Respiratory Physiology - Definitions

- Minute Ventilation (V_E) amount of air passing through the lungs in one minute
- Dyspnea breathing difficulty
- <u>Respiratory Exchange Ratio</u> amount of CO₂ expired by the lungs divided by the amount of O₂ extracted from the air in the lungs (VCO₂ / VO₂).

RER = .7	→	100% fat	0% carb
RER = .85	→	50% fat	50% carb
RER = 1.0	→	0% fat	100% carb

Neurophysiology - Definitions

• Afferent - sensory nerves - going toward spinal column

• Efferent - effector nerves - going away from spinal column

Adrenergic Receptors & Associated Responses

α₁ stimulation:

- Constriction of blood vessels
 - Vascular smooth muscle activation
- Constriction of lung bronchioles
- Constriction of bladder muscles
- ↑ myocardial cardiac contractility
- Relaxation of GI tract

α_2 <u>stimulation</u>:

- central sympathetic outflow
 - I release of NE

β_1 stimulation:

- t in HR
- **†** in myocardial contractility
- t in Renin secretion
 - fluid retention

β_2 stimulation:

- Dilation of lung bronchioles
- Dilation of blood vessels

Agonists in the adrenergic system are primarily epinephrine and norepinephrine

Antagonists are many times associated with drugs known as "blockers" i.e. "β-blocker" or "a-blocker"

Agonist – body molecule or drug "stimulator" Antagonist - body molecule or drug "in-activator"

Microcirculatory Anatomy – a Capillary Bed

Development of the Driving Pressure in the Human Cardiovascular System

Mechanism of Control of Cardiovascular and Respiratory Systems

• Heart Rate – Neurohormone (neurotransmitter) and CNS (medulla) regulation

- Parasympathetic vagus control (Neurotransmitter: acetylcholine)
 - Vagal control dominant at rest withdrawn when exercise begins
- Sympathetic cardio-acceleration (Neurotransmitter: Epinephrine & Norepinephrine)

Baroreceptor influences

- Sympathetic discharge <u>indirectly</u> proportional to firing rate
- Parasympathetic discharge is <u>directly</u> proportional to firing rate
- \downarrow pressure $\rightarrow \downarrow$ receptor firing $\rightarrow \uparrow$ sympathetics $\rightarrow \uparrow$ HR $\rightarrow \uparrow$ pressure
- \uparrow pressure \rightarrow \uparrow receptor firing \rightarrow \uparrow parasympathetics \rightarrow \downarrow HR \rightarrow \downarrow pressure
- Atrial Stretch receptors: ↑ receptor pressure → ↑ HR + ↓ ADH & ↓ ANP
 - ▲niti-<u>D</u>iuretic-<u>H</u>ormone (vasopresin) & <u>A</u>trial <u>N</u>atriuretic <u>P</u>eptide → ↑ urine secretion

Chemoreceptor influences

- Main function: protect brain from poor perfusion
- \uparrow O₂ or \downarrow CO₂ \rightarrow \uparrow parasympathetic discharge \rightarrow \downarrow HR
- $\downarrow O_2$ or $\uparrow CO_2 \rightarrow \downarrow pH \rightarrow pressor area (medulla) stimulation \rightarrow \uparrow HR$

Stroke Volume (SV) – regulated by Frank Starling mechanism

• ↑ venous return → ↑ EDV → ↑ stroke volume

Cardiac Output (\dot{Q}) – main determinant: body O₂ needs

- Autoregulated by two distinct mechanisms

 - Extrinsic hormonal influences
 - Norepinephrine release → ↑ HR and SV

Blood Pressure – influenced by 4 major factors (some interrelated)

- Total peripheral resistance
 - Baroreceptor (BR) and CNS Influences
 - \uparrow BP \rightarrow \uparrow BR firing rate \rightarrow vasodilation \rightarrow \downarrow BP
 - ↓ BP → ↓ BR firing rate → ↑ sympathetics → ↑ BP
- Chemoreceptor influences
 - $\downarrow O_2$, $\uparrow CO_2$, $\downarrow pH \rightarrow CNS$ stim. \rightarrow vasoconstriction
 - Circulating catecholamine influences
 - E and NE have varying effects on TP
 - E and NE usually activate α receptors $\rightarrow \uparrow$ TPR
 - Fight or flight response
- Q
- Blood Volume
 - Renin Angiotensin system

Dehydration

• Dehydration: the loss of body water and associated electrolytes

• Causes:

- Gastroenteritis (viral / bacterial infection → vomiting & diarrhea) most common
- Diseases: yellow fever, cholera,
- Excessive alcohol consumption
 - The excess fluid is flushed out by the kidneys: ↑ water usage → dehydration
 - Most liquors have <u>congeners</u> which are toxic to body → removal necessary
 - The clearer & better quality your liquor (vodka & gin) the less congeners
 - more distillation cycles \rightarrow better quality

 - Congener removal done by liver: ↓ liver glucose → hypoglycemia & lethargy
- Prolonged exercise without fluid replacement (heat exhaustion & heat stroke risk)
- Diabetes: hyperglycemia → ↑ glucose excretion → ↑ water loss → dehydration
- Shock: blood loss due to some hypotensive state caused by injury or disease
 - Gastrointestinal blood loss: bleeding from ulcers or colorectal cancer

Dehydration

Signs & Symptoms of dehydration:

- Dry mouth, dry swollen tongue, rapid heart rate (possible chest palpitations)
- Lethargy (sluggishness), confusion
- Poor skin turgor (a pinch of skin does not spring back into position)
 - Good test for ailing elderly folks
- Elevated BUN (renal function test): NH₄ metabolized in liver & excreted by kidneys
- Elevated creatinine → ↓ GFR (kidney clearance of waste products)
- Increased blood viscosity
- Headache
- Fluid loss → low blood pressure → dizziness upon standing up
- A high urinary specific gravity (comparison of density to water: 1 gram / cm²)

Treating Dehydration

- Sip small amounts of water
- Drink carbohydrate / electrolyte solutions: Gatorade, Pedialyte, etc.
- If core body temperature > 104 ° + ↓ BP or ↑ HR → consider IV fluid replacement

Skeletal Muscle Blood Flow – autoregulated – 2 mechanisms

- Mechanism 1: Vasodilator Metabolites
 - Usually overrides adrenergic neurohormone control
 - Mediated by vasodilator metabolite (VDM) buildup & removal
 - Adenosine (ATP by-product), CO₂, H⁺, prostaglandins

• Exercise Example – (negative feedback control)

- Muscle exercises \rightarrow VDM's released $\rightarrow \uparrow$ vasodilation
- the second sec

• Mechanism 2: Myogenic response

- Involves stretch activated Ca++ channels (negative feedback control)
 - \uparrow blood flow \rightarrow vessel stretch \rightarrow Ca⁺⁺ channel activation
 - ↑ [Ca⁺⁺] in smooth muscle → vasoconstriction → ↓ flow

Systemic Blood Flow During Exercise: Autonomic influences

Sympathetic outflow & circulating catecholamines

• α activation \rightarrow vasoconstriction in non - exercising tissue

Redistribution of blood flow during maximal exercise

- 500 ml/min to heart - NC in brain blood flow
- 11,300 ml/min **†** to muscle 400 ml/min **†** to skin
- 500 ml/min ↓ to kidneys 800 ml/min ↓ to viscera
- 200 ml/min 4 to various other parts of the body

Respiration: Minute Ventilation (\dot{V}_E) = Tidal Volume X Respiratory Rate

Controlled via the medulla respiratory center

- Peripheral chemoreceptors not a big influence
 - \uparrow blood CO₂ content \rightarrow receptor activation $\rightarrow \uparrow \dot{V}_E$
 - \downarrow blood O₂ content \rightarrow receptor activation $\rightarrow \uparrow \dot{V}_E$
- Central chemoreceptors dominant influence
 - \uparrow blood CO₂ & lactate \rightarrow receptor activation $\rightarrow \uparrow \dot{V}_E$
 - $P_aCO_2 \rightarrow \uparrow HCO_3 + H^+ \rightarrow H^+ activates receptor \rightarrow \uparrow \dot{V}_E$
- Respiratory control during exercise no consensus
 - \uparrow venous return \rightarrow mechanoreceptor activation $\rightarrow \uparrow \dot{V}_E$
 - Proprioceptor activation $\rightarrow \uparrow \dot{V}_{E}$
 - Intrapulmonary receptor activation $\rightarrow \uparrow \dot{V}_{E}$
- Minute ventilation control during exercise
 - Low exercise intensity: \dot{V}_{E} **†** by both **†** TV and **†** RR
 - High exercise intensity: $\dot{V}_{E} \uparrow$ by \uparrow RR only

Acute Cardiorespiratory Responses to Endurance Exercise

Acute Responses to Aerobic Exercise

- Oxygen Consumption (VO₂)
 - **†** VO₂ in direct proportion to **†** workload (power requirement of exercise)
 - Expressed in both relative and absolute terms
 - Relative: ml O₂/kg/min Absolute: ml/min or L/min
 - Average VO_{2max} for 40 year old male 37 ml/kg/min
 - Oxygen consumption linked to caloric expenditure (1 liter of O_2 consumed = 5 kcal)

• Heart Rate

• tup to 3 times resting value at peak exercise (time spent in diastole)

• <u>Stroke Volume</u>

- **†** up to 1.5 resting value at peak exercise
 - Increase levels off at 40% 50% VO₂ max ??
- ↑ in venous return → ↑ EDV (Starling mechanism)
- ESV eluding to an f in myocardial contractility
- t ejection fraction rest: 58% max exercise: 83%

•<u>Cardiac Output</u> (Q)

- t up to 4 times resting value at peak exercise (t is rapid at onset, then levels off)
- ↑ Q → ↑ venous return
 - Venous return mediated by and related to:
 - Sympathetic venoconstriction
 - Muscle pump
 - Inspiration → ↓ thoracic pressure
 - Blood flows to an area of reduced pressure
 - ↑ inspiration → ↑ abdominal pressure

Acute Responses

to Aerobic

Exercise

Arteriovenous oxygen difference

- Difference in [O₂] between arterial and mixed venous blood
- Illustrated by the oxyhemoglobin desaturation curve
- † approximately 3 fold from rest to max exercise
- At rest, about 25% of arterial O₂ is extracted
- At peak exercise about 75% 85% of arterial O₂ is extracted

Blood Pressures and Resistance to Flow

- SBP: **†** failure to **†** signifies heart failure
- DBP: slight ↑ or slight ↓ or NC
- MAP: slight 1

- Acute Responses to Aerobic Exercise
- TPR: I mainly due to vasodilation in exercising muscle

Coronary (Myocardial) Blood Flow

- 4.5% of Q goes to myocardium at rest and at peak exercise
 - This increase is due to ↑ MAP and CA vasodilation

Blood Flow to the Skin

- as exercise duration to allow for heat dissipation
- I at max exercise to meet exercising muscle demands
- t during exercise recovery, again for heat dissipation

Acute Responses to Aerobic Exercise

Minute Ventilation

- Resting average: 6 Liters/min
- Peak exercise average: 175 Liters/min
- Respiratory rate: resting 12-18 peak exercise: 45-60
- Tidal volume: resting .5 liters peak exercise: 2.25 Liters

Plasma Volume

- Blood plasma 1 in the interstitium of exercising muscle
- Fluid shift results in a 5% ↓ in plasma volume
 This is termed "Hemoconcentration"
- Blood viscosity increases

Oxygen Debt and Deficit

• Delay in time for aerobic ATP production to supply energy

Oxygen Debt due to:

- Resynthesis of high energy phoshosphates (CP, ATP)
- Replace oxygen stores
- Lactate conversion to glucose (gluconeogenesis)
- **†** HR, respiration, catecholamines, body temperature

Training Adaptations to Chronic Endurance Exercise

Effects of Exercise Training on the Components of the Fick Relationship

Submax Workload (measured at same pre-training workload)

 $\frac{NC}{\dot{V}O_2} = HR \times SV \times AVO_2 diff$

note: a slight \downarrow in afterload (mentioned above) accompanied by a \downarrow in HR translates into <u>a reduction</u> <u>myocardial \dot{VO}_2 at rest or at any submaximal workload</u>

• Max Workload (measured at peak exercise) $\dot{VO}_2 = HR \times SV \times AVO_2$ diff some studies show a slight decrease

Training Adaptations

Mean Arterial Pressure

- Small I at rest or during exercise
- Systolic and Diastolic Blood Pressure
 - Small ↓(6 10 mmHg) at rest
 - Larger I (10 12 mmHg) at submaximal workload
 - Exercise: first line of therapy for borderline hypertensives
 - Some studies report a mean ↓ of about 9 mmHg
- Total Peripheral Resistance and Afterload
 - \uparrow capillarization (more parallel circuits) $\rightarrow \downarrow$ Transit time
 - I TPR → I Afterload
- Respiratory Variables
 - Respiratory Rate
 - Rest: NC
 - Submax exercise:
 - Air remains in lungs longer
 - More O₂ extracted (about 2%)
 - Max exercise: **†**
 - Tidal Volume
 - Rest: NC
 - Submax exercise: 1
 - Max exercise: 1

t \dot{V}_{E} during submax & max exercise

 $\mathbf{V}_{\mathbf{E}} / \dot{\mathbf{V}}_{\mathbf{O}_2}$ during submax exercise

- Anaerobic Threshold or OBLA or Ventilatory Threshold
 - Occurs at a higher percentage of VO₂ max
 - Pre-training: 50% VO₂max Post-training: 80% VO₂max

Mitochondria

• t number, size and membrane surface area

Training Adaptations

Aerobic Enzymes in Exercising Muscle

- Trebs cycle enzymes (succinate dehydrogenase)
- β oxidation enzymes (carnitine acyltransferase)
- I electron transport enzymes (cytochrome oxydase)
- Fatty Acid & Glycogen Utilization
 - \uparrow utilization of β oxidative pathways to produce ATP
 - Called the "glycogen sparring effect"
 - RER for any given submaximal workload
 - f muscle glycogen stores (with high carbohydrate diet)
- No Appreciable Change in Resting Metabolic Rate

Exception: training induced **†** in lean muscle mass

• Intelet Aggregation

- Fibrinolytic Activity
- Circulating Catecholamines
 - ↑ vagal tone → ↓ risk of arrhythmia

• <u>A Resistance to Pathological Events</u>

- Smaller infarct size and quicker recovery
- Less of a ↓ in ventricular function during ischemia

Heart Rate (beats / minute)

Cardiac Output (liters / minute)

A-V O2 Difference (ml%)

Oxygen Consumption (liters / minute)

Oxygen Consumption (ml/kg/minute)

Systolic Blood Pressure (mm Hg)

Diastolic Blood Pressure (mm Hg)

