Obesity \& diabetes changes in America 1994-2007

Energy Metabolism Estimation

Resting Metabolic Rate (RMR) $=1$ MET $=3.5 \mathrm{ml} \mathrm{O}_{2} / \mathrm{kg}$ body wt $/ \mathrm{min}$
1 Liter $\mathrm{O}_{2}=5 \mathrm{Kcal}$
1 lb adipose tissue (fat) $=3500 \mathrm{Kcal}$
$1 \mathrm{~kg}=2.2 \mathrm{lbs}$.
$1 \mathrm{mph}=26.8$ meters $/ \mathrm{min}$
1 kgm = 9.807 joules
1 watt $=6.1 \mathrm{kgm} / \mathrm{min}$
Speed in min. $/$ mile $=60 /$ speed in MPH

Example:

1. Estimate the daily energy requirements of a 176 lbs. Man (RMR)
2. How much weight would the man lose in one week if he reduced his caloric intake by $250 \mathrm{kcal} /$ day and burned an extra $250 \mathrm{kcal} /$ day by running on a treadmill (assume all metabolic hormone influences are negligible and that he does indeed have fat to lose)?

$\frac{500 \mathrm{kcal}}{\frac{7 \text { days }}{\text { day }}} \frac{1 \mathrm{lbs} . \text { fat }}{1 \text { week }} \quad \overline{3500 \mathrm{kcal}} \quad \frac{1 \mathrm{lb} . \text { fat }}{\text { week }}$

Estimation Equations For Exercise Metabolism

Walking - speeds 50 to $100 \mathrm{~m} / \mathrm{min}$: 1.9 to 3.7 mph

$$
\begin{aligned}
& \text { Horizontal Component: } \mathrm{VO}_{2} \mathrm{ml} / \mathrm{kg} / \mathrm{min}=\text { SPEED } \mathrm{m} / \mathrm{min} \times .1 \mathrm{ml} / \mathrm{kg} / \mathrm{min} / \mathrm{m} / \mathrm{min} \\
& \text { Vertical Component: } \mathrm{VO}_{2} \mathrm{ml} / \mathrm{kg} / \mathrm{min}=\text { SPEED } \mathrm{m} / \mathrm{min} \times \text { \%GRADE } \times 1.8 \mathrm{ml} / \mathrm{kg} / \mathrm{min} / \mathrm{m} / \mathrm{min} \\
& \text { Resting Component: } \mathrm{VO}_{2} \mathrm{ml} / \mathrm{kg} / \mathrm{min}=3.5 \mathrm{ml} / \mathrm{kg} / \mathrm{min} \\
& \text { Total } \mathrm{VO}_{2}(\mathrm{ml} / \mathrm{kg} / \mathrm{min})=\text { sum of the resting, horizontal and vertical components } \\
& \quad \text { Relative } \mathrm{VO}_{2}=(\mathrm{SPEED} \times .1)+(\text { SPEED } \times \text { GRADE } \times 1.8)+3.5
\end{aligned}
$$

Running - speeds > $134 \mathrm{~m} / \mathrm{min}:>5 \mathrm{mph}$ or between 3 and 5 mph if truly running Horizontal Component: $\mathrm{VO}_{2}=$ SPEED $\mathrm{m} / \mathrm{min} \times .2 \mathrm{ml} / \mathrm{kg} / \mathrm{min} / \mathrm{m} / \mathrm{min}$
Vertical Component: $\mathrm{VO}_{2} \mathrm{ml} / \mathrm{kg} / \mathrm{min}=$ SPEED $\mathrm{m} / \mathrm{min} \times \%$ RADE $\times .9 \mathrm{ml} / \mathrm{kg} / \mathrm{min} / \mathrm{m} / \mathrm{min}$
Resting Component: $\mathrm{VO}_{2} \mathrm{ml} / \mathrm{kg} / \mathrm{min}=3.5 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$
Total $\mathrm{VO}_{2}(\mathrm{ml} / \mathrm{kg} / \mathrm{min})=$ sum of the resting, horizontal and vertical components

```
    Relative }\mp@subsup{\textrm{VO}}{2}{}=(\mathrm{ SPEED x .2 ) + (SPEED x GRADE x .9 ) + 3.5
```


Cycle Ergometry

$\mathrm{VO}_{2} \mathrm{ml} / \mathrm{kg} / \mathrm{min}=(1.8 \mathrm{ml} / \mathrm{kgm}$ WORK RATE $\mathrm{kgm} / \mathrm{min})+(3.5 \mathrm{ml} / \mathrm{kg} / \mathrm{min})+(3.5 \mathrm{ml} / \mathrm{kg} / \mathrm{min})$ BODY WEIGHT (kg)
WORK RATE $=$ Resistance (kg) \times Pedal Revolution Circumference ($\mathrm{m} / \mathrm{rev}$) \times RPM (rev/min)
Pedal Revolution Circumference: Monarch $-6 \mathrm{~m} / \mathrm{rev}$ Tunturi $-3 \mathrm{~m} / \mathrm{rev}$

$$
\text { Relative } \mathrm{VO}_{2}=\{[1.8 \times(\mathrm{R} \times \mathrm{PRC} \times \mathrm{RPM})] / \mathrm{BW}\}+7
$$

Metabolic Calculation Example

You have been assigned to supervise exercise for a new post-CABG cardiac patient who weighs 210 lbs. And has a peak $\dot{V O}_{2}$ of 6 METS. At what speed would you set the treadmill at a 5% grade for a workout at 50% of his peak \dot{V}_{2} ?

METS to VO_{2} conversion


```
10.5 ml
    kg = (speed x .1) + (speed x.05 x 1.8) + (3.5)
    min
10.5 = (.19 x speed ) + (3.5)
speed = 36.8 meters / min
    Substitution into and then
    solving the equation
    = 1.4 mph
```


Metabolic Calculation Example

You have been directed to change the patient's workout in the previous question from a treadmill to a monarch cycle ergometer. His peak $\dot{V O}_{2}$ was 6 METS and he weighed 210 lbs. At what resistance would you set a Monarch bike at 60 rpm for a workout at 50% of his peak VO_{2} ? How many calories would the patient burn in a 30 minute workout at this workload?

Body Weight Conversion

$$
\frac{210}{1} \frac{1 \mathrm{~kg}}{2.2 \mathrm{lbs}}=95.5 \mathrm{~kg}
$$

Substitution into and then solving the equation for kg of resistance

```
10.5 ml
    \(\left.\frac{\overline{\mathrm{kg}}}{\mathrm{min}}=\frac{[1.8 \times(6 \times 60 \times \mathrm{kg})}{95.5}\right]+7\)
\(10.5=\operatorname{kg}(6.79)+7\)
\(.52=k g\)
```

Caloric expenditure calculation

```
    1002.75 \frac{\textrm{ml}}{\textrm{min}}\cong\frac{1 liter/\mp@subsup{O}{2}{}}{min}}\times\frac{5\textrm{kcal}}{\mathrm{ liter / O2}}\times30\textrm{m}:\textrm{m}=150\textrm{kcal
```


Derivations of the Fick Equation

$$
\begin{aligned}
& \dot{\mathrm{VO}} \mathrm{O}_{2} \frac{\mathrm{ml} \mathrm{O}_{2}}{\min }=\quad \dot{\mathrm{Q}} \frac{\mathrm{~L} \text { blood }}{\min } \quad x \quad \mathrm{AVO}_{2} \mathrm{D} \frac{\mathrm{ml} \mathrm{O}}{\mathrm{~L} \text { blood }} \\
& \dot{\mathrm{VO}} 2^{\frac{\mathrm{ml} \mathrm{O}_{2}}{\min }}=\mathrm{HR} \frac{\text { beats }}{\min } \times \mathrm{SV} \frac{\text { Lblood }}{\text { beat }} \times \quad \mathrm{AVO}_{2} \mathrm{D} \frac{\mathrm{ml} \mathrm{O}_{2}}{\text { Liblood }}
\end{aligned}
$$

the unit on the " 10 " in the above equation is : $\mathbf{m l} \mathbf{O}_{\mathbf{2}}$ lliter of blood
$\overline{\mathrm{ml} \mathrm{O}} / \mathbf{1 0 0} \mathbf{~ m l}$ of blood

Rest \& Exercise Oxyhemoglobin (De) Saturation Curves

Metabolic Calculation Example

A pulmonary patients is being intra-arterially monitored for AVO2Diff which was found to be $4.228 \mathrm{ml} \%$. His [Hb] is $16 \mathrm{~g} \%$, his current arterial O 2 sat 85%, and his current venous O 2 sat is 70%. Assuming his venous sat does not change, what must his arterial $\mathbf{O 2}$ sat be to raise his AVO2Diff to around normal levels (about $\mathbf{6 m l} \mathbf{~}$)?

$$
(\mathrm{SaO} 2)=.982 \text { or } 98 \%
$$

$$
\begin{aligned}
& \left(\begin{array}{lllllll}
1.34 & \times & {[\mathrm{Hb}]} & x & \mathrm{SaO}_{2} & x & 10
\end{array}\right)-\left(\begin{array}{llllll}
1.34 & x & {[\mathrm{Hb}]} & x & \mathrm{SvO}_{2} & x \\
10
\end{array}\right)=4.228 \mathrm{ml} \% \\
& \frac{\mathrm{ml} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{Hb}} 100 \frac{\mathrm{~g} \mathrm{Hb}}{\mathrm{ml} \text { blood }} \quad \mathrm{KO}_{2} \text { sat } \quad \frac{\mathrm{ml} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{Hb}} \underset{100-\mathrm{ml} \mathrm{blood}}{ } \%_{2} \text { sat } \\
& \left(1.34 \times[16] \times \mathrm{SaO}_{2} \times 10\right)-\left(\begin{array}{llllll}
1.34 & x & {[16]} & x & .70 & x \\
10
\end{array}\right)=60 \mathrm{ml} / \mathrm{L} \\
& 214(\mathrm{SaO} 2)=210.08
\end{aligned}
$$

