

KINE 639 - Dr. Green

Physical Examination, Sensitivity of Medical Testing, & Exercise RX

Can You Trust The Most Technologically Advanced Country In The World With The Best Healthcare System in the World With Your Health???

In 2007 & 2008, 87 billion people (1/3 of US population) had no health insurance

- In US, between 44,000 and 98,000 deaths per year attributed to misdiagnosis & errors
 - Citation: New England Journal of Medicine, April 2000
 - This exceeds the rate from motor vehicle accidents (43,458), breast cancer (42,297), or AIDS (16,516).
 - Get a second Opinion!
- Specimen analysis labs In the top 4 hospitals in this country reported:
 - 305,000 wrong (results) contributing to wrong diagnosis each day
 - 40% of these mistakes injured or harmed patients
- 1% of all pathology lab reports are erroneous and results in harm to patient
 - Delay in breast cancer diagnosis is the most prosecuted civil suit in U.S.
- 1 in 50 acute MI patients are sent home from the ER with wrong diagnosis
- Pediatricians admit to at least on diagnostic error per month
 - PEDIATRICS (doi:10.1542/peds.2009-3218)

<u>Tips to help prevent medical Errors: http://familydoctor.org/736.xml</u>
<u>The US healthcare system.doc</u>

Components of a Good Medical History and Physical Exam

Medical History

- All previous diagnoses & examination findings, paying special attention to orthopedic and cardiorespiratory history
- Detailed description & history of current symptoms
- Recent illness, hospitalizations, and surgical procedures
- Current medications and drug allergies
- Family, work & exercise history
- Lifestyle history including exercise and eating habits, recreational drug and alcohol use, smoking and tobacco history

Height, weight, body composition, temperature

Physical Exam

- Ear, nose, mouth, neck (lymphatic), throat, & genitourinary exams
- Supine, standing, & exercise HR's, BP's, ECG's
- Palpation of the abdomen and cardiac apical impulse
- Auscultation of the heart & lungs
- Palpation & auscultation of carotid, abdominal & femoral arteries
- Palpation & inspection of extremities for edema and palpation of peripheral pulses
- Inspection for xanthoma & finger clubbing
- Neurological & eye exams (reflexes, opthlamoscope)
- Review of recent blood panels (CMP, CBC), and urine tests
- US Screening for DVT's, Carotid Arteries, AAA (>60
- Current recommended cancer screenings (colorectal, breast, prostate, skin, lung, oral)

Validity of Medical Screening Tools

- True Positive Test (TP) test is positive and condition is present
- False Positive Test (FP) test is positive and condition is absent
- True Negative Test (TN) test is negative and condition is absent
- False Negative Test (FN) test is negative and condition is present
- Sensitivity: % of people with the condition that test positive
 TP
 TP + FN
- Specificity: % of people without the condition that test negative
 TN
 TN + FP
- Predictive Value: % of people with a positive test that have the condition

Sensitivity and specificity for GXT with 12- lead ECG

Sensitivity: approx. 67% Specificity: approx. 70% (AHA)

Health Risk Continuum and Graded Exercise Testing

Consider two people, both of whom had a positive GXT (ST-segment depression)

Healthy MI waiting to happen

Gender: female

Family History: negative

Age: 17
TC: 146
HDL-C 69
LDL-C 92

BP: 114 / 76

Smoking: never

Peak $\dot{V}O_2$: 52 ml O_2 / kg / min

Diabetes: never

Exercise habits: 3x / week for 50 min.

Gender: male

Family History: father died of MI at 42

Age: 70
TC: 310
HDL-C 29
LDL-C 191

BP: 156 / 96

Smoking 150 pack years

Peak VO2: 22 ml O2 / kg / min
Diabetes: Type 1 since age 23

Exercise habits: none

ST- segments and Hemodynamics of GXT

- ST depression is up-sloping & shallow
- ST depression noted only at peak exercise
- ST depression resolved 15 sec after test
- BP 174 / 84 at peak exercise
- BP 118 / 72 10 min after test

ST-segments and Hemodynamics of GXT

- ST depression is down-sloping & deep
- ST depression noted at low workload
- ST depression persists 8 min after test
- BP 246 / 112 at peak exercise
- BP 208 / 100 10 min after test

(99.99% sure of a False + test)

(99.99% sure of a True + test)

Components of the Common Graded Exercise Test (GXT)

Pre-Test

12-lead ECG in supine and exercise postures (make sure it is "clean") Blood pressure in supine and exercise postures

Exercise

12-lead ECG during last minute of each stage or every 3 minutes
Blood pressure during last minute of each stage
Exertional and, if necessary, angina scales
Symptoms noted → 12-lead ECG, BP, scales, symptom description

Post- Test

IPE 12-lead ECG

IPE blood pressure

IPE exertion scale while at max exercise and, if necessary, angina scales

Recovery

12-lead ECG every 1 - 2 minutes for at least 5 minutes
Blood pressure every 1 - 2 minutes until it returns to near pre-test level
Symptomatic rating scale assessments if symptoms persist

Types of Cardiopulmonary Graded Exercise Tests (GXT's)

- Simple GXT with 12 lead ECG and BP assessments
 - The kind we do here at A&M
- Pharmacologic GXT
 - GXT using sympathomimetic drugs to † HR & BP
- Metabolic GXT
 - GXT with measurement of VO2 and VCO2
- Nuclear GXT
 - GXT with injection of radioactive RBC attaching tracers
 - Scintillation counter shows areas of under-perfusion
- GXT with echocardiography
 - detects wall motion abnormalities caused by ischemia

Factors influencing follow-up testing decisions for a positive GXT

GXT results (ST ↓ depth, arrhythmias, BP's, etc.)
Age
Family history

Smoking status
Rest & exercise BP's
Other diseases
Lifestyle

Non-invasive Nuclear Imaging

Lipids status

Stress **Echocardiography**

Coronary Angiography

(mortality: .15%)

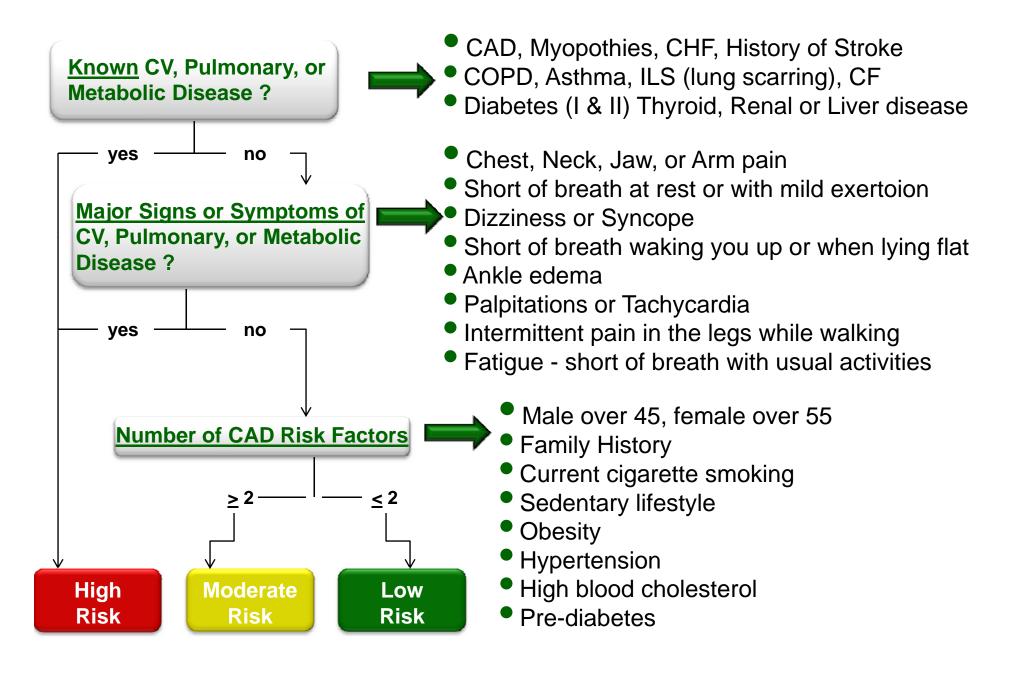
1

 ↓

Sensitivity: approx. 97%

Sensitivity: approx. 87%

Specificity: approx. 73%


Sensitivity: approx. 86%

Specificity: approx. 81%

An example of inferioseptal ischemia. Note stress defects from 6 o'clock to 9 o'clock in the short axis view and horizontal long axis view that redistributes at rest.

ACSM Risk Stratification

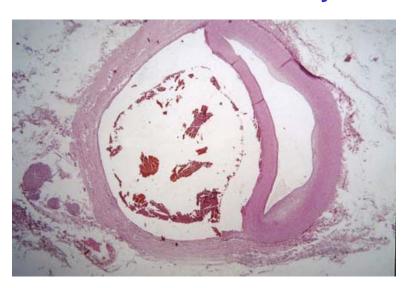
ACSM GXT Physician Supervision Recommendations

M.D. Supervision recommended for Graded Exercise Testing

	submax testing	
	no	no
Older persons or those having 2 or more ACSM risk markers	no	yes
Signs, symptoms, of CV disease or known CV, pulmonary, or metabolic disease	yes	yes

Absolute Contraindications to Graded Exercise Testing (ACSM)

- Recent MI (within 2 days)
- Symptomatic ventricular arrhythmia
- Symptomatic supraventricular arrhythmia
- Uncontrolled symptomatic heart failure
- Unstable angina


- Recent significant ECG changes (ischemia)
 Suspected or known dissecting aneurysm (see below)
 - Acute myocarditis or pericarditis
 - Thrombophlebitis or intracardiac thrombi
 - Acute pulmonary embolus or infarction
 - Acute systemic infection
 - Symptomatic & severe aortic stenosis

Ruptured AAA mortality rate is 75% and is 15th leading cause of death of people > 60 years.

Stenting or surgery recommended for aneurysms greater than 5cm in diameter

Cross-Section of Aneurysm

Relative Contraindication to Graded Exercise Testing (ACSM)

- Resting SBP > 200 mmHg, DBP > 110 mmHg
- Left main coronary obstruction
- Moderate stenotic valvular heart disease
- Electrolyte abnormalities
- Hypertrophic cardiomyopathy/ outflow tract obstruction
- Tachyarrhythmias or bradyarrhythmias
- Ventricular aneurysm
- High degree AV block

- Uncontrolled metabolic disease
 Diabetes
 Thyrotoxicosis (hyperthyroid)
 Myxedema (hypothyroid)
- Chronic active infectious disease
 AIDS
 Mononucleosis
 Hepatitis
- Physical & mental limitations Neuromuscular problems Musculoskeletal problems Rheumatoid arthritis

Dangerous ventricular ectopy (not in ACSM guidelines – in Thaler)

Successive run of 3 or more PVC's (run of V-tach.)

PVC's compose > 30% of complexes

PVC's falling on a T-wave (R on T)

Multifocal PVC's

Any PVC in the setting of an acute MI

Indications for Terminating a GXT (ACSM)

Absolute

- ↓ SBP ≥ 10 mmHg + signs of ischemia
- Moderate to severe angina (3 on 4 point scale
- † CNS problems
 (ataxia, dizziness, syncope)
 (may reflect inadequate cerebral flow)
- Poor perfusion (cyanosis, pallor)
- Technical difficulties
- Sustained V-tach
- ST-segment elevation > 1 mm
 - Without diagnostic Q-waves
 - may indicate arterial stenosis
 - With diagnostic Q-waves (old MI)
 - ventr. aneurysm or ↓ wall motion

Relative

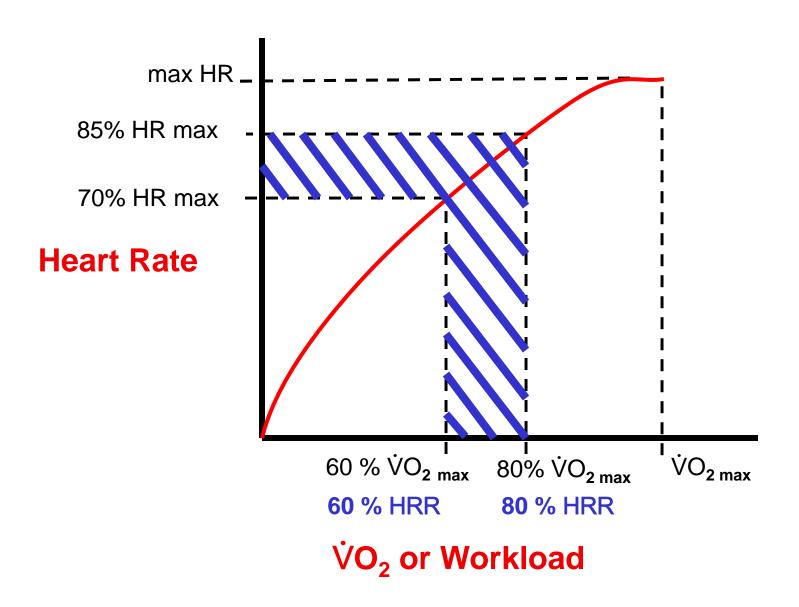
- **↓** SBP ≥ 10 mmHg
- Shift in the ECG axis
- Horizontal or down-sloping ST-segment depression > 2mm
- Multifocal PVC's or 3 PVC's in a row
- PSVT, heart blocks, bradyarrhythmias (especially wide QRS complex rhythms)
- Fatigue, shortness of breath, leg cramps wheezing, claudication
- Wide complex tachycardia
- Any † in chest pain
- SBP > 250 mmHg, DBP > 115 mmHg

Differences in Physiological Responses to Exercise in Those with CAD

- Lower maximum oxygen consumption → Short time on treadmill
- Blunted (slow to rise) cardiac output response → Blunted ↑ in BP
 - Blunted heart rate response
 - Blunted stroke volume response
- Blunted increase / decrease in ejection fraction → Blunted † in BP
- AVO₂difference widens earlier in exercise and is less than normal
- Lower rate of circulatory adjustment to workload
 - → HR & BP take longer to increase and stay high longer after exercise

Hossack, Bruce, et al. Am J Cardiol 52, 1983

Test Results Warranting Medical Referral


- Significant ST-segment changes from baseline
 Horizontal-to-downsloping ST segment depression ≥ 1 mm (ischemia)
 ST segment elevation in exercise ECG (ischemia very probable)
- Significant ventricular or supraventricular ectopy or rhythm
 Not necessarily associated with absence or presence of CAD
- Any chest or arm pain induced or increased with exercise
- Failure to increase or significant drop in HR or SBP during exercise
 Normal: 10 beats / MET 10 mmHg / MET
 Maximal SBP of < 140 mmHg suggests poor prognosis
- Hypertensive response to exercise (SBP > 225 mmHg)
- Exercise induced 2nd or 3rd degree AV block
- Exercise induced BBB

ACSM Exercise Participation Recommendation

Physical & GXT Recommended Prior to Exercise Participation

	moderate exercise	vigorous exercise
45 Q<55 + no more than 1 ACSM risk marker	no	no
Older persons or those having 2 or more ACSM risk markers	no	yes
Signs, symptoms, of CV disease or known CV, pulmonary, or metabolic disease	yes	yes

$\dot{V}O_2$ – Heart Rate Relationship for Exercise Rx

Endurance Exercise Rx for Healthy People: ACSM Guidelines

FREQUENCY:

3 to 7 sessions per week

INTENSITY:

- 70% 85% of peak HR (60% 80% of peak VO₂) for young healthy people
- 57% 67% of peak HR (30% 45% of peak \dot{VO}_{2}) initially for sedentary people

Heart Rate Reserve Method for Calculating THR based peak VO2 (Karvonen Formula)

THR = [Intensity % x (MHR - RHR)] + RHR

- ► MHR = peak HR determined from GXT 220 age 206.9 .67(age)
- ► Intensity % = 60 + Functional capacity in METS

Reserve Method can also be used with SBP or VO₂

Target $\dot{V}O_2 = [Intensity \% x (M\dot{V}O_2 - R\dot{V}O_2)] + R\dot{V}O_2$

- RPE: 12 16 on Borg Scale (5 to 8 on a 10 point scale)
- While exercising, a conversation should be possible

DURATION: 20 – 60 minutes per session, average 30 – 40 minutes

Goals for health: - get at least 150 minutes/week - expend at least 350 kcal 3 days/week (1050 kcal/wk)

For weight loss: - 60 minutes per session - 300 minutes/week - expend > 2000 kcal/week

Remember: overuse injuries increase dramatically with a duration > 45 min.

Progression Rate for Exercise Rx: ACSM Guidelines

Focus of Exercise Rx: ADHERENCE

Initial Conditioning Stage

- May lasts up to 4 weeks for previously sedentary individuals
 - 3 days / week
 - 40% 50 % HRR (slightly higher if subject is active)
 - 15 minutes (even less if client has been very sedentary)

Improvement / Progression Stage

- Lasts 4 to 5 months
- † duration and frequency before intensity
 - 3 5 days / week
 - † intensity to 70% 85% HRR
 - † duration to at least 30 minutes (progressing to 40)

Maintenance Stage

- Review goals (consider re-testing for more accurate Rx)
 - 3 5 days / week
 - 70% 85 % HRR
 - Minimum of 30 minutes

Exercise Rx for Impaired and Sedentary People: ACSM Guidelines

Frequency and Duration

- Functional Capacity < 3 METS: 3 sessions of 5 minutes (daily)</p>
- Functional Capacity 3 5 METS: 1 2 sessions (daily)
- Functional Capacity > 5 METS: normal parameters

Intensity

- 40% 50% of peak \dot{VO}_2 initially for sedentary people
- Progress by increasing duration and frequency before intensity
- Always below pain and symptom threshold

Why Participate in Cardiac Rehabilitation....A.S. Leon & B. Franklin et al, 2005

- Cardiac related death is about 26% lower in those who do cardiac rehab
 - 21% fewer non-fatal heart attacks
 - 13% fewer bypass surgeries
 - 19% fewer angioplasties
 - At most, only about 20% of 2 million eligible candidates do cardiac rehab
- Mechanisms by which cardiac rehab reduces morbidity & mortality
 - Improved functional capacity along with reduced cardiac O₂ requirements
 - Improved blood vessel function
 - Improved coronary blood flow
 - Improved electrical stability of the heart muscle

Contraindications to Cardiac Rehabilitation

- Unstable Angina
- SBP > 200 mm Hg or DBP > 110 mmHg
- Orthostatic BP drop of > 20 mmHg with symptoms
- Severe aortic stenosis
- Uncontrolled atrial or ventricular arrhythmias
- Uncontrolled sinus tachycardia
- Uncompensated heart failure
- 3rd degree AV block without pacemaker
- Active pericarditis or myocarditis
- Recent embolism
- Thrombophlebitis
- Resting ST segment depression or elevation > 2 mm
- Uncontrolled diabetes (glucose > 400 mg / dl)
- Acute systemic illness or metabolic problems
- Orthopedic problems that would preclude exercise

Exercise RX for Cardiac Patients: ACSM Guidelines

Inpatient (Phase 1)

- Self care activities and ambulation as precursors
- Resting HR + 10 to 30 beats/min
- 2-4 session/day for 3 10 minutes per session
- Progress by ↑ bout duration and then ↓ number of bouts
- Borg Scale < 13</p>
- ECG and hemodynamics should be constantly monitored
- Notes
 - Remember trauma to sternum and vein graft sites
 - Take care not to traumatize or re-injure these areas
 - Patient's functional capacity (VO2max) is VERY LOW
 - Be patient and take great care when exercising them
 - Patient is usually told not lift more than 10 pounds for 3 weeks
 - Patient may be on a medication that limits HR (β-blockers, etc,)
 - Again, this makes functional capacity VERY LOW

Exercise RX for Cardiac Patients: ACSM Guidelines

Outpatient (Phase II)

- Functional capacity ≤ 5 METS: inpatient parameters
- Functional capacity > 5 METS: low end of normal parameters
- Progress to a goal of 20 30 minutes 3 times / week
- Progress to a goal of burning a minimum of 1000 Kcal / week
- ECG monitor required for those with:
 - LV malfunction
 - Signs of ischemia
 - Arrhythmias
 - Low functional capacities

Exercise Intensity Threshold Guidelines for Cardiac Rehabilitation

Always Set intensity level below:

- Onset of angina (at least 10 beats per minute below)
- Plateau or decrease in SBP
- SBP of 240 or DBP of 110
- ST- segment depression of 1 mm
- Signs of left ventricular dysfunction (heart failure)
- Signs of increasing ventricular ectopy or ventricular arrhythmias
- Significant AV block
- Significant supraventricular arrhythmias (tachycardia, A-fibrillation, etc.)

Notes on Exercise Rx and Cardiac Rehab

- One Study Reported:
 - No change in atherosclerotic lesions when expending 1533 Kcal / week
 - 306 Kcal (about 30 40 minutes) 5 days / week
 - Regression in atherosclerotic lesions when expending 2204 Kcal / week
 - 441 Kcal (about 45 55 minutes) 5 days / week
 - This translates into walking 15 25 miles per week at a fast pace.
- Resistance training can and should be prescribed for cardiac patients
 - Techniques to allow for breathing while lifting should be emphasized!!!
 - ♣ RPP for any given load lifted
 - Single set programs performed at least 2 time / week are preferred
 - Programs should included exercises to strengthen all muscle groups
 - May be specialized to occupation if necessary
 - Should always include muscles used for everyday living tasks
 - Standing, sitting, pushing downward, pulling,....etc.
 - Balance training should be considered if patient is unstable
 - Weight should allow for at least 10 15 repetitions per set