

KINE 639 - Dr. Green

Section 3

Non-ischemic Heart Disease and Pharmacology for the Clinical Physiologist

Exercise Testing & Prescription for Special Populations

These lectures will cover the <u>pathophysiology</u> as well as implications for <u>exercise testing</u> and <u>prescription</u> for the following health concerns

- Hypertension
- Heart Failure and Valvular Heart Disease
- Peripheral Vascular Disease

Hypertension

Types of Hypertension

- Primary (essential) hypertension
 - 95% of cases have no identifiable primary cause but may be related to:
 - heredity accounts for up to 50% of the variability in BP
 - a gene has been identified that influences sodium balance
 - CNS abnormalities → ↑ circulating catecholamines → ↑ TPR
 - stress
 - obesity / insulin resistance
 - low levels of nitric oxide (EDRF a vasodilator)
 - more prevalent in African-Americans
 - aging → ↓ arterial elasticity (arteriosclerosis) → ↑ TPR

Secondary hypertension

- Caused by specific endocrine, metabolic, or renal diseases
 - renal artery stenosis $\rightarrow \uparrow$ renin $\rightarrow \uparrow$ sodium & fluid retention $\rightarrow \uparrow$ BP
 - most common cause of secondary hypertension
 - tumors of the adrenal gland $\rightarrow \uparrow$ circulating catecholamines $\rightarrow \uparrow$ TPR

Hypertension

Effects on the physiological response to acute exercise

- Usually, hypertensives have a normal **†** in BP from baseline levels
 - BP responses to exercise may be exaggerated or diminished in a few cases
 - pre-existing hypertension → absolute ↑ in BP may increase enough to be classified as a hypertensive response to exercise (SBP > 225 mmHg)

Effects of exercise training on hypertension

- 10 mmHg I in SBP for mild to moderate hypertensives
 - possible I in circulating NE and 1 in plasma vasodilator substances
 - possible ↑ in insulin sensitivity → ↓ BP (less insulin → less Na⁺ retention)

Implications for exercise testing

- Standard ACSM guidelines apply to hypertensives
 - SBP > 200 and / or DBP > 110 is a relative contraindication to testing
 - SBP > 250 and / or DBP > 115 is a relative indication to terminate test
 - those exhibiting a hypertensive response to exercise may be at high risk for developing hypertension at rest

Hypertension

Implications for exercise prescription

- Those with BP > 180/110 should be medicated before exercising
- Normal Exercise Rx parameters may be used
 - consider starting at a low intensities and durations

• Resistance exercise has not consistently been shown to **J** BP

- pressor responses to lifting heavy weights may **†** SBP to dangerous levels
- "circuit" types of training with lighter weights and higher reps are preferred

Pathophysiology

- ↓ LV contractile capability → ↓ Q due to:
 - Prolonged untreated hypertension
 - Myocardial infarction (acute heart failure or CHF possibly resulting from accumulated MI plus hypertension damage)
 - Cardiomyopathy (malformed malfunctioning heart muscle)
 - Valvular heart disease
 - aortic stenosis & regurgitation
 - coarctation of aorta (narrowing of aortic outflow tract)
 - mitral stenosis & regurgitation
 - Myocardial infection & inflammation (myocarditis, restrictive pericarditis)

Pathophysiology

- (consequences of compensation in red)
 - **†** tissue O₂ extraction almost 100% of O₂ is extracted (**†** AVO2-difference)
 - $\uparrow \beta$ sympathetics $\rightarrow \uparrow$ TPR $\rightarrow \uparrow$ venous return & preload (\uparrow afterload)
 - ↓ renal perfusion → ↑ blood vol → ↑ venous return & preload (↑ afterload)
 - ↑↑ preload → (ventricular dilation max stretch on LV fibers)
 - Myocardial hypertrophy occurs in response to pressure / volume overload
 - Volume overload (↑↑ preload) → eccentric hypertrophy
 - Pressure overload (↑↑ afterload) → concentric hypertrophy
 - Hypertrophy \rightarrow \downarrow ventricular contractility + \downarrow ventricular compliance
 - usually, both systolic function and diastolic function are affected

Heart Failure (Acute & Chronic) Pathophysiology

- Summary of pathological changes due to heart failure
 - \$\dv{Q}\$ during exercise and, in severe cases, at rest
 - \uparrow afterload due to $\uparrow \alpha \& \beta$ symp. mediated \uparrow in TPR and fluid retention
 - **†** preload due to diastolic dysfunction & fluid retention
 - ↑ left atrial pressure → exertional dyspnea
 - destructive changes in organs due to lack of perfusion: muscles, kidneys....

Effects on the physiological response to acute exercise

- ↓ HR + ↓ SV → ↓ Q
- I max HR
- \downarrow O₂ delivery + muscle lactate buildup \rightarrow fatigue + hyperventilation
 - sometimes occurs before the onset of CHF related dyspnea symptoms
- I exercise tolerance due to
 - inability to **†** Q
 - ↓ oxidative metabolism → ↑ dependence on glycolysis
 - muscle atrophy
- Poor redistribution of blood flow during exercise

Signs & symptoms of left ventricular heart failure

- Dyspnea (pulmonary edema)
 - ↓ contractility of LV → pressure "backs up" in pulmonary circulation
 - fluid leaks into alveoli → ↓ gas exchange, cough, dyspnea
 - mismatch of \dot{V}_E : $\dot{Q} \rightarrow \uparrow$ physiologic dead space in lungs \rightarrow dyspnea
- Fatigue & weakness ("heaviness" in arms and legs)
 - \bullet caused by ${\clubsuit}$ perfusion to the muscles
- Dizziness, confusion, anxiety, memory loss,
 - \bullet caused by \clubsuit perfusion to the brain

Signs and symptoms of right ventricular heart failure

- Jugular venous distension
 - pressure "backed up" behind RV into the major veins \rightarrow venous distension
- Ascending peripheral edema
 - \uparrow venous pressure \rightarrow edema in distal extremities progresses to thighs
 - weight gain: patients may be monitored daily for gain in water weight
- Hepatomegaly & ascites (fluid in peritoneal cavity)
 - ↑ venous pressure → blood engorged liver + fluid leaks into peritoneum

• <u>Treatment strategies in CHF</u>: main goal: **↓** cardiac workload

- Angiotensin converting enzyme (ACE) inhibitors:
 - \downarrow angiotensin II $\rightarrow \downarrow$ arterial vasoconstriction $\rightarrow \downarrow$ afterload
 - \downarrow angiotensin II \rightarrow \uparrow venodilation \rightarrow \downarrow preload
 - \downarrow Na⁺ retention $\rightarrow \downarrow$ H2O retention $\rightarrow \downarrow$ blood vol $\rightarrow \downarrow$ preload
 - only drug shown to both improve symptoms and prolong life in CHF
- Diuretics + dietary salt restriction
 - ↓ H2O retention → ↓ blood vol → ↓ preload
- Positive inotropic agents: digitalis, sympathomimetics, PD inhibitors
 - digitalis \rightarrow \uparrow contractility \rightarrow \uparrow $\dot{Q} \rightarrow$ \downarrow CVP \rightarrow \downarrow preload
 - sympathomimetics: \uparrow contractility $\rightarrow \uparrow \dot{Q} \rightarrow \downarrow CVP \rightarrow \downarrow$ preload
 - PD inhibitors → ↑ cyclic AMP in myocardium and vascular smooth muscle
 - ↑ contractility + ↑ arterial & venous dilation → ↓ preload & afterload

Arterial and venous dilators

- nitrates \rightarrow \uparrow venodilation \rightarrow \downarrow preload
- nitrates → ↑ arterial dilation → ↓ afterload
- Antiarrhythmics CHF is the most arrhythmogenic CVD (V-tach)

- Implications for exercise testing:
 - Unstable or decompensated CHF is a contraindication to testing
 - Maine goals of exercise testing in CHF patients:
 - identify the severity of CHF (precisely quantify functional capacity \dot{VO}_{2max})
 - test the efficacy of various interventions
 - evaluate the possibility of other disease (CAD, PVD, VHD, arrhythmias, etc.)
 - Make sure testing protocol, equipment, and staff are appropriate
 - begin protocol at < 3 METS with small stage workload increments
 - be prepared for hypotension, arrhythmias, and chronotropic incompetence
 - use respired gas measurements if possible
 - breathing can be assessed for efficiency, T-vent can be determined
 - Observe conservative test endpoints
 - fatigue, weakness, pallor → ↓ Q
 - CNS symptoms (dizziness, unsteady gait) → ↓ cerebral perfusion
 - ST-segment changes (especially if accompanied by symptoms)
 - PVC's & ventricular ectopy (especially in aortic stenosis patients)
 - atrial flutter or fibrillation accompanied by a fast ventricular response

Implications for exercise Rx:

- Observe conservative contraindications to training:
 - decompensated CHF, LV outflow tract obstruction, unstable arrhythmias
- Maine goals of exercise training in CHF patients:
 - ↓ symptoms + ↑ functional capacity (VO_{2peak}) & T-vent → ↑ quality of life
- Make sure exercise Rx and patient monitoring is appropriate
 - prolong warm-up and cool-down sessions
 - use RPE and dyspnea scales instead of THR or absolute workload targets
 - begin at a low workload (Borg 11-13) always below point of symptoms onset
 - workload should be less than that which produces:
 - LV wall motion abnormalities or a drop in ejection fraction
 - an excessive left atrial pressure
 - anaerobic threshold (ventilatory threshold)
 - progress by advancing the duration of the bout
 - avoid isometric exercise
 - valsalva maneuver → ↑ thoracic pressure → ↑ afterload
 - CHF patients may deteriorate rapidly → frequent re-assessment of symptoms

Pathophysiology

- Narrowing of the aortic outflow tract at, above, or below the valve due to valve <u>fibrosis & calcification</u>, <u>congenital abnormality</u>, or <u>damage from rheumatic fever</u>
- Idiopathic hypertrophic subaortic stenosis (form of cardiomyopathy)
 asymmetric hypertrophy of the ventricular septum → ↓ outflow

Pathophysiology (continued)

- ↑ pressure required to eject blood into aorta → ↑ LV muscle mass
 - the thickened LV eventually dilates, stiffens, and begins to fail
- In some cases the normal tricuspid valve is abnormally bicuspid
- Usually occurs in children (congenital) or after age 70
- Pressure gradient across the valve is critical diagnostic factor
 - mild AS: peak LVSP is 10 40 mmHg higher than aortic pressure
 - severe AS: peak LVSP is > 60 mmHg higher than aortic pressure

Symptoms

- Fatigue & syncope
- Dyspnea (with exertion and at night)
- Anginal type chest pains
- Sudden death

• Treatment

- Balloon valvuloplasty "stretching" the aortic valve opening
 - may improve condition for a period of time, but procedure is not curative
- Valve replacement surgery artificial valve or autograft valve
 - Ross Operation autografted valve can grow with the child
 - patient's pulmonary valve grafted into aortic valve
 - donor valve replaces transplanted pulmonary valve
- Implications for exercise testing
 - Severe aortic stenosis is an absolute contraindication to testing
 - aortic stenosis is associated with ventricular arrhythmias & sudden death
 - Sometimes GXT 's are done to quantify functional capacity
 - ST-segment depression is often seen
 - important to use low stage increments so FC can be accurately identified
 - important to closely monitor pressure for falloffs

• Implications for exercise training

- Clinically mild AS can be prescribed exercise normal parameters
 - asymptomatic, negative GXT should be secured before exercise begins
 - begin at low intensities and durations

• Patients with gradients > 40 mmHg should not do intense exercise

- exercises with high cardiac demands should be avoided
 - no competitive activities

Surgery is usually recommended when gradient exceeds 60 mmHg

Aortic Regurgitation (Insufficiency)

Valvular Heart Disease: Aortic Regurgitation (Insufficiency)

Pathophysiology

- Retrograde flow from the aorta back into the LV
- Usually caused by:
 - rheumatic fever or bacterial endocarditis
 - congenital valve defect (valve is bicuspid instead of tricuspid)
 - Marfan's syndrome: composition defects in connective tissue \rightarrow \downarrow stiffness
- Heart must pump normal EDV + regurgitant volume
 - pressure & volume overload → eventual LV failure
 - acute AR → ↑ left atrial pressure → pulmonary edema (EMERGENCY)

Signs & Symptoms - note that most are reflective of heart failure

- Fatigue, syncope, dyspnea (with exertion and at night)
- Sensation of forceful heartbeat
- Chest pain
- Arrhythmias

Valvular Heart Disease: Aortic Regurgitation (Insufficiency)

Treatment

- Mild / asymptomatic cases
 - appropriate antibiotic prophylaxis
 - vasodilator drugs to reduce afterload
- Acute or severe chronic cases
 - valve replacement surgery
 - should be done before irreversible damage is done to the heart
- Implications for exercise testing & RX
 - Same precautions & guidelines as in heart failure
 - Strenuous or competitive exercise should be avoided

Valvular Heart Disease: Mitral Valve Prolapse

Pathophysiology

• MV leaflet "prolapses" (bulges) back into left atrium during systole

Valvular Heart Disease: Mitral Valve Regurgitation

Valvular Heart Disease: Mitral Valve Prolapse - Regurgitation

Pathophysiology (continued)

- 5% 10% of US population has some degree of MV prolapse
- Most common in women ages 40 to 50
- Severe MV prolapse will lead to MV regurgitation
 - retrograde blood flow back into the left atrium

• <u>MVP Symptoms</u> - most patients are asymptomatic

- Chest palpitations
- Arrhythmias
- Fatigue & anxiety
- Sharp chest pains (possible related to strain on papillary muscle)
- Resting & Orthostatic hypotension

SIGNIFICANT REGURGITATION → HEART FAILURE SYMPTOMS:

• Dyspnea (with exertion and at night while in prone position)

Valvular Heart Disease:

Mitral Valve Prolapse - Regurgitation

<u>Treatment</u>

- For asymptomatic MV prolapse: antibiotic prophylaxis
- β-blockers or Ca⁺⁺ channel blockers may relieve chest palpitations
- Severe MV prolapse / regurgitation: valve repair or replacement
 - should be done before irreparable damage is done to LV

Implications for exercise testing and Rx

- Exam should be performed to rule out other valve problems
- Normal parameters for exercise testing symptoms limited test
- Normal exercise Rx parameters in most asymptomatic patients
- Patients may be sensitive to exercise induced hypovolemia
- Patients that should avoid strenuous/competitive/contact sports:
 - moderate to severe regurgitation
 - history of arrhythmogenic syncope or exercise induced tachycardias
 - family history of sudden death or embolism associated with MVP

Valvular Heart Disease: Mitral Valve Stenosis

Pathophysiology

- Narrowing of the mitral valve usually due to rheumatic fever
 - thickening & calcification of the valve leaflets
 - normal valve area 4 6 cm^2 pressure gradient occurs when area < 2 cm^2
- Women have MV stenosis 4 X more than men:
 - first symptoms may occur during pregnancy
- ↑ LA pressure transmitted back to lungs → ↑ pulmonary edema
 - LA becomes dilated \rightarrow conduction fibers are stretched \rightarrow A-fib may occur
 - essentially, patients have left sided heart failure without LV dysfunction

Signs & Symptoms

- Exertional dyspnea is most common symptom in mild MS CONDITION PROGRESSES (VALVE AREA OF 1 CM² OR LESS)
- Marked fatigue & dyspnea due to pulmonary congestion
- Paroxysmal nocturnal dyspnea
- Cough or hoarseness
- Stagnation of LA blood flow → ↑ risk of thrombi formation

Valvular Heart Disease: Mitral Valve Stenosis

Treatment

- For asymptomatic MV stenosis: antibiotic prophylaxis
- β -blockers used to slow HR and \uparrow diastolic filling time
- Mild pulmonary congestion can be treated with diuretics
- A-fib patients require antiarrhythmics and anticoagulants
- Severe MS requires valve replacement or balloon valvuloplasty

Implications for exercise testing and Rx

- SV may fall during exercise due to inadequate ventricular filling
 - exercise \rightarrow **†** HR \rightarrow **↓** diastolic filling time \rightarrow **↓** SV \rightarrow **↓** $\dot{Q} \rightarrow$ **↓** SBP
 - $\downarrow \dot{Q} \rightarrow \downarrow$ muscle perfusion $\rightarrow \uparrow$ lactate $\rightarrow \downarrow$ functional capacity
 - pulmonary congestion → ↑ work of breathing → dyspnea is limiting factor
- Normal parameters for exercise testing symptoms limited test
 - use precautions similar to those for heart failure patients
- For exercise Rx, use same precautions as in heart failure patients
- Strenuous / competitive / contact sports should be avoided

Peripheral Arterial Disease (PAD)

<u>Peripheral Arterial Disease</u> - atherosclerotic obstruction of peripheral arteries

Signs & Symptoms

- claudication (usually earliest & most common symptom):
 - cramping in the hips, thighs, & especially the calves
 - caused by skeletal muscle ischemia
- numbness, weakness, or heaviness of lower extremity muscles
- severe cases → burning aching pain at rest in feet & toes
- pale color & palpable coldness of lower extremities
- diminished or absent peripheral pulses (tibial & dorsalis pedis pulses)

Risk Factors

• Hypertension, Diabetes, Age, CAD, Smoking (similar to CAD risk markers)

• Diagnosis

- ratio of ankle SBP to brachial SBP (AB index) is less than 0.9
- doppler assessments of flow
- angiography
- treadmill testing to assess functional capacity (time to claudication)

Peripheral Arterial Disease (PAD)

- <u>Treatment</u>
 - Exercise → ↑ vascularization and blood flow + ↑ pain tolerance
 - may double time to claudication or exertion level before it appears
 - Cilostazol helps to relieve PAD symptoms
 - PDE III inhibition \rightarrow **†** C-amp \rightarrow **↓** Ca++ in smooth muscle \rightarrow vasodilation
 - I platelet aggregation
 - Pentoxifylline (TRENTAL)
 - ↓ blood viscosity → ↑ blood flow
 - Dipyridamole (PERSANTINE), PLAVIX
 - inhibition of platelet adhesion → ↑ blood flow
 - Warafin Sodium (COUMADIN)
 - inhibition of vitamin K dependent coagulation factors → ↑ blood flow
 - Aspirin & other platelet inhibitors → ↓ platelet aggregation
 - Angioplasty (to place stents in large peripheral arteries)
 - Lower limb bypass surgery

Peripheral Arterial Disease (PAD)

• Implications for exercise testing and Rx

• Exercise Testing

- ABI's are assessed pre & post exercise
- gradual stage workload increments are used to precisely assess FC
- pain scale of 1-4 is used to assess claudication pain throughout GXT
- record elapsed time from volitional termination to symptoms disappearance
- closely monitor patients for signs of CAD
 - 50% 80% of PAD patients have CAD

• Exercise Rx

- <u>Mode</u>: treadmill (walking), stair climbing
- Frequency: minimum 3 days per week
- Intensity: 3 on a 4 point pain scale (≅ 40% Karvonen to start)
- <u>Duration</u>: 20 minutes exercise to point of pain tolerance, rest, repeat
 - usually, 5 minutes of exercise will produce severe claudication
 - allow full recovery between bouts
 - increase duration before intensity
- <u>Progression</u>: 40 60 minutes of intermittent exercise within 6 months

Nitrates (NO2) - anti-anginal medication

Nitrates

TRIDIL ISORDIL SORBITRATE DILATRATE CARDILATE ISMO MONOKET

Indications

- angina (stable angina management)
- **↓** coronary artery spasm

Effects

- venous & arterial vasodilator
- I preload
- ↓ afterload
- † myocardial O2 supply
- I myocardial O2 demand
- **↓** BP
- **†** HR (via baroreceptor)
- t exercise angina threshold

Adverse Reactions

- dizziness & syncope (II BP)
- orthostatic hypotension
- tolerance can be built up which means that, over time, more of the drug must be used to achieve the desired effect

β - blocker and Calcium Channel Blocker Mechanisms

β-blockers

INDEROL, VISKIN, BLOCADREN, CORGARD, COREG Carvedolol, BYSTOLIC

Indications:

• angina

- hypertension (not a 1st line drug for hypertension)
- ventricular & supraventricular arrhythmias
- congestive heart failure & cardiomyopathies
- treatment of MI's

Effects

- Adverse Reactions
- I HR & contractility → ↓ Q → ↓ BP ↓ · lethargy (↓ functional capacity)
 - \rightarrow **†** O₂ supply + \downarrow O₂ demand
 - t exercise angina threshold
 - I functional capacity
 - -• I susceptibility to ventr. arrhyth.

- $\boldsymbol{\cdot}$ $\boldsymbol{\downarrow}$ signs of hypoglycemia in diabetics
- ↓ cold tolerance
- depression
- vivid & bizarre dreams

Notes: Some β -blockers are <u>cardioselective</u>, meaning they have greater affinity for β 1 (heart) receptors: BREVIBLOC Esmolol, LOPRESSOR TOPROL-XL Metaprolol

Calcium Channel Blockers

CALAN (Verapamil), CARDAZEM (Diltiazem), PROCARDIA (Nifedipine), CARDENE (Nicardipine), NIMOTOP, NORVASC, PLENDIL, VASCOR, SULAR

Indications:

- hypertension (1st line drug for hypertension)
- PSVT, atrial fibrillation & flutter
- angina
- coronary artery spasm

Effects

- \downarrow HR & contractility $\rightarrow \downarrow \dot{Q} \rightarrow \downarrow$ BP
- \uparrow O₂ supply + \downarrow O₂ demand
- † exercise angina threshold
- ► ↓ arterial vasoconstriction → ↓ BP
- 🔶 🖡 PSVT
 - I atrio-ventricular conduction rate
 - I coronary artery spasm
 - drug of choice for variant angina

Adverse Reactions

- headaches
- flushing
- I cold tolerance
- depression
- vivid & bizarre dreams

Drugs Affecting the Renin-Angiotensin System

1. Angiotensin Converting Enzyme Inhibitors

VASOTEC CAPOTEN ZESTRIL ACCUPRIL MONOPRIL LOTENSIN LISINOPRIL

Indications:

- Hypertension (1st line drug for hypertension along with Ca⁺⁺ blockers)
- Congestive heart failure

Effects:

Adverse effects:

- I blood (plasma) volume cough
- ↓ vasoconstriction hypotension
- I preload & afterload
- t cardiac effciency & l edema
 - drug of choice for CHF patients

2. Angiotensin II Antagonists COZAAR BENICAR DIOVAN

Competitive antagonist of Angiotensin II:

• I aldosterone production and I angiotensin II mediated vasoconstriction

DIGITALIS DIGOXIN, LANOXIN

Poisons the Na⁺ K⁺ ATP-ase pump

- ↑ [Na+] inside cell → ↓ activity of exchanger → ↑ Ca++ inside cell
- ↑ Ca++ inside cell → ↑ myocardial contractility

Ca⁺⁺ extrusion is passively linked to Na⁺ extrusion from repolarizing cells. This process involves active transport and requires energy

Anti-platelet Drugs: Thienopyridines

PLAVIX (Clopidogril) TICLID (Ticlopidine)

Inhibits platelet aggregation (stops platelets from sticking together)

- ↓ platelet aggregation → ↓ clot formation (↓ atherothroembolic events)
- often used in conjunction with Aspirin
- often used after CABG surgery, angioplasty / stent placement

Indications:

- helps prevent MI's, Strokes, TIA's
- used to prevent clots in valvular heart disease or during various surgeries

Precautions & side effects:

- major side effects: **†** gastrointestinal and other bleeding, **↓** neutrophil number
 - \uparrow time for coagulation to take place \rightarrow \uparrow bleeding or bruising from trauma
 - use NSAID's with caution due to the compounding effect of the drugs
- FDA has issued updated warnings:
 - **†** risk for heart problems & unsubstantiated claims of effectiveness

Anti-platelet Drugs: Phosphodiesterase (PDE3) Inhibitors

PERSANTINE (Dipyridamole) AGGRENOX (Dipyridamole + Aspirin) <u>Cilostazol (PLETAL)</u>

- Inhibits Phosphodiesterase → ↓ breakdown of C-AMP + ↑ Adenosine
 - ↑ Cyclic-AMP in the platelet → ↓ platelet aggregation
 - ↑ adenosine → relaxation of arterial smooth muscle → vasodilation
 - † contractility + † stroke volume + ↓ afterload & preload
 - used to treat congestive heart failure

•Indications:

- used propholactically to prevent throboembolic events, PAD, CHF
- used as an adjunct to other anticoagulants in the prevention of postoperative thromboembolic complications of cardiac valve replacement